Tag Archives: terminal

Keep FreeBSD Desktop Updated

While its relatively easy (or brain dead easy with GhostBSD or NomadBSD distributions) to install and configure a FreeBSD Desktop – one have to keep in mind that its also important to keep that system updated and secure.

There are many aspects about FreeBSD to keep it updates and secured.

The Table of Contents for this article is shown below:

  • FreeBSD Base System
  • Packages
  • FreeBSD Linux Browser Installer
  • WINE
  • Cargo Packages
  • FreeBSD Ports Tree
  • Summary

Lets now discuss each section one by one.

FreeBSD Base System

First is the FreeBSD Base System which is updated by the frebsd-update(8) utility. It is not often you need to do this – from my experience its once a month need usually.

The list of needed commands are shown below.

# freebsd-version
# frebsd-update fetch
# frebsd-update install

While the freebsd-version(1) will tell you what version you are currently running the freebsd-update(8) will help you to update your FreeBSD system to have latest patches installed.

… but when to update the FreeBSD Base System anyway? Well – its quite simple – check the FreeBSD Security Advisories page – and if something posted there affects you – then you should move your ass and update it πŸ™‚


After you have taken care of the FreeBSD Base System the next one to make sure you are not too much far behind are the FreeBSD packages.

You can of course check if any of your installed packages have any reported security holes as shown below.

# pkg audit -F
vulnxml file up-to-date
0 problem(s) in 0 installed package(s) found.

The above message shows that your installed packages are safe – but its not the message you see the most of the time πŸ™‚

Below are the commands that you would use to update your FreeBSD desktop system.

# pkg upgrade
# pkg autoremove
# pkg clean -y --all

… and yes it does include some extra steps to remove cached packages – and probably now not needed as the are already installed anyway.

I do not think that anything more should be added here – maybe a short mention about the packages branch you are using. The default one is the quarterly branch that has packages build every quarter.

Maybe its sometimes reasonable for the server like environments – but I prefer to have the latest versions of what FreeBSD maintainers do offer in their hard and often underestimated work.

This is why I always use – both on desktop and servers – the latest packages branch.

This means that packages are (re)built once a week or faster and you get what is latest and fresh.

I will not convince you what is better – you will have to decide for yourself.

FreeBSD Linux Browser Installer

The Linux Browser Installer helps a lot on FreeBSD systems. It provides browsers (via the Linux Compatibility Layer) that are not natively available on FreeBSD – but with DRM sh!t needed to access for example Netflix content.

The Linux Browser Installer is easy to install – but its also easy to update.

Below you will find commands that will keep your Linux Browser Installer updated and secure.

# git clone https://github.com/mrclksr/linux-browser-installer.git
# cd linux-browser-installer
# ./linux-browser-installer chroot upgrade


One may think that WINE is just another package and that it was already updated during the # pkg upgrade cycle – it depends – the default WINE package is for 64bit excusables … but its also possible to run (and often needed) the older 32bit executables.

The problem is that the 32bit environment has its own separate root with its own packages set.

To be honest its not a big deal – you just need to remember to update it along with other things you update periodically πŸ™‚

Below is the command that updates the 32bit WINE binaries/packages.

% /usr/local/share/wine/pkg32.sh upgrade

One of the things you need to keep in mind that it is done by you (user) and not the root user of the machine.

Cargo Packages

While 95% of this topic is covered above – no one prevents you from using the additional Cargo packages – and I do it myself also.

Its just that some software is not yet available by the official FreeBSD packages – but its already official by using the Cargo packages.

I personally use about 10 different Cargo packages that are still not available on the FreeBSD packages.


Here are the instructions to keep these Cargo packages updated.

First and most important – you need to install the cargo-update package to be able to update installed Cargo packages.

Then you may just use the other command to have Cargo packages updated.

# cargo install cargo-update
# cargo install-update -a

FreeBSD Ports Tree

Last but not least – the FreeBSD Ports Tree – which even if you only use binary packages – can often come handy in some exceptions.

We all know the ‘default’ rule that mixing Packages and Ports is a bad idea in the FreeBSD world – and I generally agree – its a bad idea if you do not know what you are doing.

If you do know what you are doing – you may mix anything with everything – just do not spam the FreeBSD Forums for help later πŸ™‚

The tool to update the local FreeBSD Ports Tree on your machine is still portsnap(8) and the auto argument is usually more then enough.

# portsnap auto

From the other things – you may want to setup the WRKDIRPREFIX variable to have everything built in the /usr/ports/obj directory – to have everything in one place.

# grep WRKDIRPREFIX /etc/make.conf
# rm -rf \
    /usr/ports/obj \

I often also clean the /usr/ports/obj and /usr/ports/distfiles directories.


Besides the things that I have wrote above I also sometimes save some binaries to the ~/scripts/bin path. There is not upgrade path for them besides manually checking the provider page.

Some examples of such software on my system are doso or cpuc ones.

As I do not have anything more to add here – please feel free to comment what is missing in keeping your workstation updated and secure.


XFCE Cupertino Way

I really like GhostBSD … and NomadBSD. They are really great graphical and easy to use FreeBSD variants for the lack of better word. While NomadBSD is more focused on portable USB pendrive edition the GhostBSD is more like a Ubuntu replacement. Install and use on your laptop or desktop computer. It comes in two flavors – the default MATE edition and an alternative XFCE edition.

One of the things I really like about Ubuntu MATE edition is that it comes with desktop layout helper tool that will allow you to select one of the available predefined MATE desktop layouts.


From all of the available ones I like the ‘Cupertino’ one the most – its tries to mimic the Apple Mac OS X operating system behavior with global menu on top and Plank dock at the bottom … and it does it really well.


I wanted to do something similar on GhostBSD but unfortunately the Vala Panel Application Menu for MATE desktop environment is not available for FreeBSD (and that means its also not available for GhostBSD). Fortunately the XFCE global menu is available on FreeBSD as x11/xfce4-appmenu-plugin package so I will try to make GhostBSD look more like Ubuntu Mate in its Cupertino layout with several easy steps.

By default GhostBSD XFCE edition comes with single XFCE panel at the bottom. I have done pretty straightforward installation with fish(1) shell chosen as default during installation.



By default GhostBSD comes with 96 DPI set by the installer. Lets change that to something smaller. Start the Appearance application.


Now set the desired settings for the fonts on the Fonts tab. After some checks the 80 DPI along with Hinting set to None looked best. I also switched to the Ubuntu font.


ZSH Shell and Terminal

While the fish(1) shell is quite decent interactive shell with sane defaults I really prefer the POSIX syntax compatible zsh(1) shell instead. I talked more about that in my Ghost in the Shell – Part 7 – ZSH Setup article.

I will not repeat everything I wrote there and I will just paste the instructions here to make that zsh(1) shell configured and nice looking.

root # pkg install -y \
         zsh \
         zsh-autosuggestions \
         zsh-syntax-highlighting \

root # fetch -o /usr/local/etc/zshrc https://raw.githubusercontent.com/vermaden/scripts/master/zshrc

user % fetch -o ~/.zshrc             https://raw.githubusercontent.com/vermaden/scripts/master/DOT.zshrc

user % fetch -o ~/.zshrc.DOAS.SUDO   https://raw.githubusercontent.com/vermaden/scripts/master/DOT.zshrc.DOAS.SUDO

user % chsh -s /usr/local/bin/zsh

user % fc-cache -f

As we are at the terminal related things enable Solarized (Dark) theme in the XFCE Terminal options.


… and change font to Ubuntu Mono with your preferred size.


Now you have the zsh(1) shell configured and set as your default shell. Also the XFCE Terminal looks better now. Some settings will require logout and login route but I recommend something different. Go through all these setting and then do just one single reboot or logout/login routing.


XFCE Global Menu

I though that XFCE global menu is – same as MATE one – not available on FreeBSD. Fortunately Joel Carnat with its FreeBSD 13 on ThinkPad T460s article proved me wrong. He even added the instructions to his guide – for which I am very thankful to him.

To get XFCE global menu on FreeBSD (and GhostBSD) we need to do these steps.

root # pkg install -y xfce4-appmenu-plugin

user % xfconf-query -c xsettings -p /Gtk/ShellShowsMenubar -n -t bool -s true

user % xfconf-query -c xsettings -p /Gtk/ShellShowsAppmenu -n -t bool -s true

user % xfconf-query -c xsettings -p /Gtk/Modules -n -t string -s appmenu-gtk-module

Now we will be able to add the XFCE AppMenu Plugin to our top panel.


We need to now move the XFCE panel from bottom to the top. Go into the Panel Preferences as shown below and move it.


After moving it to the top and enabling the Lock Panel option add/remove the Items to match this list below. Feel free to also add other items that you need.


To make the XFCE AppMenu Plugin look even better enable Bold Application Name in its Preferences dialog.


As for the Whisker Menu left only icon enabled to display to make it look better.


The XFCE AppMenu Plugin should be now ready and the top panel should look somewhat like that.


You can also customize the DateTime plugin to your needs.


Window Manager

The Window Manager settings are not controlled by the Appearance application. It has its own separate one. Lets start it.


We will also set the Ubuntu font here.


Make sure your user (vuk in this guide) is in below groups.

root # pw groupmod wheel    -m vuk
root # pw groupmod operator -m vuk
root # pw groupmod video    -m vuk
root # pw groupmod network  -m vuk

You can omit the network group if you do not intend to use network.sh to manage your network connections.


As the last step we will add the Plank dock at the bottom.

root # pkg install -y plank

user % plank &

user % plank --preferences

You should see something like that on the bottom of your screen.


The Plank preferences are shown below.


Make sure to add Plank to Startup so it will start automatically at each login.



After all these steps our GhostBSD looks more or less like that now.


Plain FreeBSD Way

Some people will prefer to stick to the ‘original’ FreeBSD instead of using preconfigured GhostBSD. This last section is for them. First install FreeBSD like described HERE. Then install these packages shown below.

root # pkg install -y exa ubuntu-font xfce xfce4-appmenu-plugin xorg-minimal

user % echo '. /usr/local/etc/xdg/xfce4/xinitrc' > ~/.xinitrc

user % xintrc

Now having done the above do all the steps from that article.

The end result seems quite similar.


You may even want to replace Plank with another bottom XFCE Panel if you want.


Viola! You have XFCE configured on plain FreeBSD. One thing to keep in mind is that besides XFCE you have nothing more πŸ™‚ Using GhostBSD method all other things are configured. With plain FreeBSD way you have no device automounting. No network plugin in the taskbar. No power management tuning. No other applications. Nothing. But you can all do it yourself using the needed articles from the FreeBSD Desktop series or other sources.

One last thing. I really appreciate that GhostBSD exists and is actively maintained and expanded – this guide is not here to make it look bad. Its here to make it better.


Ghost in the Shell – Part 7 – ZSH Setup

Today I would like to share with you my simple yet useful zsh(1) shell config that I use daily.

You may want to check other articles in the Ghost in the Shell series on the Ghost in the Shell – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.

I have been various UNIX and Linux systems since almost two decades. Through that time I was always looking for the best interactive shell out there. Obviously I have started with the bash(1) on Linux and it generally worked but bash(1) also did not impressed me at all. Just a shell. I have similar experiences with the ksh(1) shell. Today even the plain POSIX /bin/sh shell on FreeBSD has basic completion similar in many ways to what bash(1) or ksh(1) allows. The bash(1) shell gets little better when you install the bash-completion companion but its very limited still.

When I moved to FreeBSD I got to know its default tcsh(1)/csh(1) shell … which is PITA to use and scripting. Its pointless to learn limited CSH shell syntax in 2021. Omit it at any costs. After I settled a little in the FreeBSD wonderland I started to try other shells such as zsh(1) or fish(1) shells. I really liked fish(1) shell preconfigured setup and its defaults because it required literally zero effort to use it at its peak possibilities … but when I tried one of my typical use cases which is some commands | while read I; other command "${I}"; done it came to me that fish(1) is very limited shell and even does not support critical POSIX /bin/sh syntax! What a disappointment to say the last.

I abandoned the fish(1) shell and went to the zsh(1) which by default does not do more then a bash(1) shell and needs well thought configuration to be useful and powerful. After checking some guides and howtos about zsh(1) shell I started to create my own config and this was the interactive environment I was looking for. Of course I had several newbie problems or things that did not worked well for me like for example automatic completion of user home directories or UPPERCASE to lowercase automatic translation but after digging more into the zsh(1) config and man pages I finally settled with sensible and reasonable zsh(1) shell config.

I also tried various ready to use zsh(1) preconfigurations such as PowreLevel10k or Oh-My-Zsh but none of them really satisfied my while being kinda ‘blackbox’ with features that I do not really need. I really like to use things that I understand under the hood so I stayed with my quite simple yet fast loading config.

Why ZSH Shell Anyway?

Besides The Usual Suspects (really great movie by the way) like recursive search with [CTRL]+[R] for forward search and [CTRL]+[SHIFT]+[R] for reverse search – argument completion for most commands like shown below.

% tar -[TAB]
A  -- append to an archive
c  -- create a new archive
f  -- specify archive file or device
t  -- list archive contents
u  -- update archive
v  -- verbose output
x  -- extract files from an archive

The graphical example of that can be shown here. Of course I am not able to show [TAB] key there as I am able to add in the ‘text’ examples.


Interactive argument completion like showing the list of processes you can kill(1) by pressing the [TAB] key while being at kill(1) or killall(1) commands.

% kill -9 [TAB]
 9289  4  Ss+  0:00.62 -zsh (zsh)
16994  2  Is   0:00.28 -zsh (zsh)
17860  1  Is+  0:00.17 -zsh (zsh)
23797  3  Is+  0:00.23 -zsh (zsh)
30335  4  S+   0:00.01 -zsh (zsh)
32381  4  R+   0:00.00 ps
44994  0  Is+  0:00.50 -zsh (zsh)
59828  2  I+   0:00.02 /bin/sh /usr/bin/man zsh
65435  2  I+   0:00.05 less

Similar with the pkill(1) command when trying to autocomplete with ‘h‘ letter. The filter adds all running processes that have ‘h‘ letter in them – not only processes that start with the ‘h‘ letter.


There are also other more sophisticated completions like completioning the file name but not from the front but by the part of it … or by extension. Take a look at these two examples below. This is out directory listing that we will be using as an example here.

% exa -l
drwxr-xr-x - vermaden 2021-09-18 21:47 and a really PITA dir with spaces
.rw-r--r-- 0 vermaden 2021-09-18 21:54 huge.iso
.rw-r--r-- 0 vermaden 2021-09-18 21:46 really.async.example.txt
.rw-r--r-- 0 vermaden 2021-09-18 21:47 some-plain-file.txt

Three files and one directory with spaces in its name.

To autocomplete any of them with bash(1)you would have to start typing the file or dir name from the beginning. The fish(1) shell is on par with zsh(1) here as it would also support the thing that I want to show you.

First things first – the cd(1) command to change current working directory. Because there is only ONE directory there both zsh(1) and fish(1) shells would properly autocomplete the only once and a really PITA dir with spaces dir for the cd(1) command like shown below.

% exa -l
drwxr-xr-x - vermaden 2021-09-18 21:47 and a really PITA dir with spaces
.rw-r--r-- 0 vermaden 2021-09-18 21:54 huge.iso
.rw-r--r-- 0 vermaden 2021-09-18 21:46 really.async.example.txt
.rw-r--r-- 0 vermaden 2021-09-18 21:47 some-plain-file.txt

% cd [TAB]

// after pressing [TAB] once becomes this

% cd and\ a\ really\ PITA\ dir\ with\ spaces

The bash(1) (and csh(1)/tcsh(1) for the record) would obviously need to start from the first letter of any of those dir or files trying the really stupid completion method.

Now the second part about completion of files extensions or names in the middle of dirs or files. Both zsh(1) and fish(1) shells support that. Examples below.

% exa -l
drwxr-xr-x - vermaden 2021-09-18 21:47 and a really PITA dir with spaces
.rw-r--r-- 0 vermaden 2021-09-18 21:54 huge.iso
.rw-r--r-- 0 vermaden 2021-09-18 21:46 really.async.example.txt
.rw-r--r-- 0 vermaden 2021-09-18 21:47 some-plain-file.txt

% cat txt[TAB]

// NOW zsh(1) will show all files that have 'txt' string in it

% cat le.txt[TAB]


% cat really.async.example.txt[TAB]
really.async.example.txt  some-plain-file.txt


% cat some-plain-file.txt[TAB]
really.async.example.txt  some-plain-file.txt


Example of menu completion feature below.


Time to stop showing off and start to provide some useful content.

System Config

There are lots of guides and ideologies about how you spread your zsh(1) configuration between system wide config file and user customized ones like these:

  • /etc/zshenv
  • /etc/zprofil
  • /etc/zshrc
  • /etc/zlogin
  • /etc/zlogout
  • ~/.zshenv
  • ~/.zprofile
  • ~/.zshrc
  • ~/.zlogin
  • ~/.zlogout

My take? Lets not make some big issue about that. I really like simple sensible setups and I use zsh(1) as interactive shell so ‘system wide’ configuration is not crucial here. To make things as simple as possible I only use two of all of the above. The /usr/local/etc/zshrc for the ‘system wide’ part and ~/.zshrc for my ‘user’ part. Thats it. I have been doing that since more then a decade and it worked for me like a charm but as in every case your millage may vary here.

As there are too many Linuxisms out there assuming that you are using Ubuntu Linux or that bash(1) shell is always available as /bin/sh binary after 16 years of me using FreeBSD UNIX there for sure will several BSDisms but at least they are harmless and documented πŸ™‚

The /usr/local/etc/zshrc (or should I say /etc/zshrc on Linux and other then FreeBSD UNIX systems) is as follows.

  umask 022
  export PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin
  export EDITOR=vi
  export PAGER=less



# IMITATE sockstat(1) ON LINUX
  case $( uname ) in
    (Linux) alias sockstat="netstat -lnptu --protocol=inet,unix" ;;

  export HISTSIZE=655360
  export HISTFILE="${HOME}/.zhistory"

  bindkey -M vicmd '/' history-incremental-pattern-search-backward
  bindkey -M vicmd '?' history-incremental-pattern-search-forward

  bindkey -M viins '^R' history-incremental-pattern-search-backward
  bindkey -M viins '^F' history-incremental-pattern-search-forward

  bindkey '^[[A' up-line-or-search
  bindkey '^[[B' down-line-or-search
  bindkey "^R" history-incremental-search-backward

  bindkey '^[[Z' reverse-menu-complete

  bindkey '\e.' insert-last-word

  bindkey "^A" beginning-of-line
  bindkey "^E" end-of-line

  case "${TERM}" in
      bindkey '\e[H'    beginning-of-line   # HOME
      bindkey '\e[F'    end-of-line         # END
      bindkey '\e[5~'   delete-char         # DELETE
      bindkey '[D'      emacs-backward-word # ESC+LEFT
      bindkey '[C'      emacs-forward-word  # ESC+RIGHT
      bindkey '\e[3~'   delete-char         # DELETE
      bindkey '\eOc'    forward-word        # CTRL+RIGHT
      bindkey '\eOd'    backward-word       # CTRL+LEFT
      # RXVT WORKAROUND FOR screen(1) UNDER urxvt(1)
      bindkey '\e[7~'   beginning-of-line   # HOME
      bindkey '\e[8~'   end-of-line         # END
      bindkey '^[[1~'   beginning-of-line   # HOME
      bindkey '^[[4~'   end-of-line         # END
      bindkey '\e[H'    beginning-of-line   # HOME
      bindkey '\e[F'    end-of-line         # END
      bindkey '\e[3~'   delete-char         # DELETE
      bindkey '\e[1;5C' forward-word        # CTRL+RIGHT
      bindkey '\e[1;5D' backward-word       # CTRL+LEFT
      # XTERM WORKAROUND FOR screen(1) UNDER xterm(1)
      bindkey '\e[1~'   beginning-of-line   # HOME
      bindkey '\e[4~'   end-of-line         # END
      # GNU SCREEN
      bindkey '^[[1~'   beginning-of-line   # HOME
      bindkey '^[[4~'   end-of-line         # END
      bindkey '\e[3~'   delete-char         # DELETE
      bindkey '\eOc'    forward-word        # CTRL+RIGHT
      bindkey '\eOd'    backward-word       # CTRL+LEFT
      bindkey '^[[1;5C' forward-word        # CTRL+RIGHT
      bindkey '^[[1;5D' backward-word       # CTRL+LEFT

# zstyle ':completion:*' matcher-list 'm:{a-zA-Z}={A-Za-z}'

  zstyle ':completion:*:*:*:users' ignored-patterns \
    dladm dbus distcache dovecot list ftp games gdm gkrellmd gopher gnats \
    adm amanda apache avahi backup beaglidx bin cacti canna clamav daemon \
    sshd sync sys syslog uucp vcsa smmsp svctag upnp unknown webservd xfs \
    listen mdns fax mailman mailnull mldonkey mysql man messagebus netadm \
    hacluster haldaemon halt hsqldb mail junkbust ldap lp irc xvm libuuid \
    nscd ntp nut nx ident openldap operator pcap pkg5srv postfix postgres \
    netcfg nagios noaccess nobody4 openvpn named netdump nfsnobody nobody \
    proxy privoxy pulse pvm quagga radvd rpc rpcuser shutdown statd squid \
    www-data news nuucp zfssnap rpm '_*'

  zstyle ':completion:*' completer _expand _complete _correct _approximate _history
  zstyle ':completion:*' matcher-list '' '' 'l:|=* r:|=*' 'l:|=* r:|=*'
  zstyle ':completion:*' list-colors ''
  zstyle ':completion:*' users root
  zstyle ':completion:*' menu select
  zstyle :compinstall filename '~/.zshrc'
  autoload -Uz compinit
  autoload -U colors && colors

  unsetopt beep
  setopt no_beep
  setopt nohashdirs
  setopt extended_glob
  setopt auto_cd
  setopt auto_menu
  setopt list_rows_first
  setopt multios
  setopt hist_ignore_all_dups
  setopt append_history
  setopt inc_append_history
  setopt hist_reduce_blanks
  setopt always_to_end
  setopt no_hup
  setopt complete_in_word
  limit coredumpsize 0

# ZSH zshcontrib(1) zmv
  autoload zmv
  alias zmv_to_lower='zmv      "*" "\${(L)f}"'
  alias zmv_to_upper='zmv      "*" "\${(U)f}"'
  alias zmv_to_capital='zmv    "*" "\${(C)f}"'
  alias zmv_to_hypen='zmv      "*" "\$f:gs/ /-/"'
  alias zmv_to_underscore='zmv "*" "\$f:gs/ /_/"'

# COLOR grep(1)
  export GREP_COLOR='1;32'
  export GREP_COLORS='1;32'
  export GREP_OPTIONS='--color=auto'
  alias grep='grep --color'
  alias egrep='egrep --color'

# FreeBSD ifconfig(8) CIDR NOTATION
  export IFCONFIG_FORMAT=inet:cidr

# SET ls(1) COLORS
  export LSCOLORS='exExcxdxcxexhxhxhxbxhx'
  export LS_COLORS='no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32'

  stty -ixon

# 30 - black     # 34 - blue
# 31 - red       # 35 - magenta
# 32 - green     # 36 - cyan
# 33 - yellow    # 37 - white

  case $( whoami ) in
  export PS1="$cTIM%T$cSTD $cSRV%m$cSTD $cUSR%n$cSTD $cPWD%~$cSTD $cPMT%#$cSTD "
  export PS2="$cTIM%T$cSTD $cUSR>$cSTD $cPWD"

  case ${TERM} in
    (cons25*) export LC_ALL=en_US.ISO8859-1 ;;
    (*)       export LC_ALL=en_US.UTF-8     ;;

  alias rehash='hash -r'
  alias make='env LANG=C LC_ALL=C make'
  alias h='history'
  alias c='clear'
  alias vim='vim -i NONE'
  alias fetch='fetch -Rr --no-verify-peer --no-verify-hostname'
  alias wget='wget -c -t 0'

  case $( uname ) in
      if /usr/bin/env which exa 1> /dev/null 2> /dev/null
        alias bls='/bin/ls -p -G -D "%Y.%m.%d %H:%M"'
        alias gls='gls -p --color=always --time-style=long-iso --group-directories-first --quoting-style=literal'
        alias ls='exa --time-style=long-iso --group-directories-first'
      elif /usr/bin/env which gls 1> /dev/null 2> /dev/null
        alias bls='/bin/ls -p -G -D "%Y.%m.%d %H:%M"'
        alias ls=' gls -p --color=always --time-style=long-iso --group-directories-first --quoting-style=literal'
        alias ls=' /bin/ls -p -G -D "%Y.%m.%d %H:%M"'
      export PKG_PATH=http://ftp.openbsd.org/pub/OpenBSD/$( uname -r )/packages/$( uname -m )/
      [ -e /usr/local/bin/colorls ] && alias ls='/usr/local/bin/colorls -G'
      if /usr/bin/env which exa 1> /dev/null 2> /dev/null
        alias gls='ls -p --color=always --time-style=long-iso --group-directories-first --quoting-style=literal'
        alias ls='exa --time-style=long-iso --group-directories-first'
        alias ls='ls -p --color=always --time-style=long-iso --group-directories-first --quoting-style=literal'
  alias la='ls -A'
  alias ll='ls -l'
  alias exa='exa --time-style=long-iso --group-directories-first'

If for any reason WordPress would mess the above config up here is the plain text version – https://raw.githubusercontent.com/vermaden/scripts/master/zshrc – available from my GitHub scripts repository.

While its comments generally say a lot about that is happening there I will also add several notes here.

I have left disabled the UPPERCASE from/to lowercase transparent translation because while it helped at about 10% of times it really pissed me off with pointless autocomplete suggestions the 90% of the time. If your work/complete schema is different the enable and test it. Maybe it will suit you better then me. Below is the part I am talking about – in enabled form.

  zstyle ':completion:*' matcher-list 'm:{a-zA-Z}={A-Za-z}'

At the end of the config you will find ‘casting’ for the best ls(1) solution existing in a system. After trying various listing commands such as:

  • FreeBSD ls(1) command
  • Linux ls(1) (known as gls(1) under FreeBSD)
  • New exa(1) command
  • New lsd(1) command

I have abandoned lsd(1) as besides colors its close to useless to use exa(1) as primary listing command. The second one that I recommend (that may be a surprise to FreeBSD users) would be the Linux ls(1) command from sysutils/coreutils package on FreeBSD. The last ‘resort’ command would be the FreeBSD ls(1) command as documented in the config. Why you should ask? The answer is quite simple – the directory listing. Both exa(1) and gls(1) have options to list directories (and what is more important SYMLINKS to directories) first. The FreeBSD ls(1) not only does not list symlinks to directories first – it also treat any directory as any other object and just list directories and symlinks put somewhere there withing all other files. Its unacceptable for me. Its just a messy pointless output. As much as I like and respect FreeBSD UNIX this is just plain fucking stupid. No matter how much history is in it.

Here is the comparison between them. I also wanted to show you the long listing (with -l option obviously) but its the same ‘not dirs first’ behavior for the FreeBSD ls(1) so not need for that.


User Config

I will not add the ‘user’ part of my zsh(1) config and add some comments below.

  if [ -f ~/.zshrc.DOAS.SUDO ]
    source ~/.zshrc.DOAS.SUDO
    echo "NOPE: file ~/.zshrc.DOAS.SUDO absent."

  export PATH=${PATH}:~/scripts:~/scripts/bin:~/.cargo/bin
  export EDITOR=vi
  export VISUAL=vi
  export BROWSER=firefox
  export MANWIDTH=tty
  export ENV=${HOME}/.shrc
  export IFCONFIG_FORMAT=inet:cidr
  export LC_COLLATE=C

  export DISPLAY=:0
  export _JAVA_OPTIONS='-Dawt.useSystemAAFontSettings=on'
  export NO_AT_BRIDGE=1

  case ${TERM} in
    (rxvt)   : ;;
    (xterm*) : ;;
    (*)      alias exa='exa --icons' ;;

  alias Grep=grep
  alias grpe=grep
  alias grepMAC='grep -i -E "[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}"'
  alias grepIP='grep -E "([0-9]+\.){3}[0-9]+"'
  alias cls='printf "\033[H\033[J"'
  alias e=exa
  alias bat='bat --color=always'
  alias x='xinit ~/.xinitrc -- -dpi 75 -nolisten tcp 1> /dev/null 2> /dev/null'
  alias ffmpeg='ffmpeg -hide_banner'
  alias mupdf='mupdf -r 120'
  alias tac='tail -r'
  alias lsof='lsof -w'
  alias less='less -r --chop-long-lines'
  alias more='less -r --chop-long-lines'
  alias pstree='pstree -g 2'
  alias lupe='lupe -noshape -mag 2 -nohud -geometry 300x200 -noreticle -noiff'
  alias parallel='parallel --no-notice --progress -j 3'
  alias pv='pv -t -r -a -b -W -B 1048576'
  alias caja='caja --browser --no-desktop'
  alias evince=atril
  alias we="curl -4 http://wttr.in/Lodz\?Q\?n 2> /dev/null | sed '\$d' | sed '\$d'"
  alias cclive='cclive -c'
  alias yu='youtube-dl -c -i -f best --skip-unavailable-fragments'
  alias aria2c='aria2c --file-allocation=none'
  alias dig=drill
  alias cssh='cssh -o "-o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no"'
  alias ssh='ssh -o LogLevel=quiet -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no'
  alias feh="feh --scale-down \
                 --auto-rotate \
                 --auto-zoom \
                 --fontpath ~/.fonts \
                 --font       ubuntu/8 \
                 --menu-font  ubuntu/8 \
                 --title-font ubuntu/8"
  alias wget='wget -c --no-check-certificate \
                   -U "Opera/12.16 (X11; FreeBSD 13.0 amd64; U; en) Presto/3 Version/12"'
  alias scp='scp -o ControlMaster=yes \
                 -o ControlPath=/tmp/%r@%h:%p \
                 -o UserKnownHostsFile=/dev/null \
                 -o StrictHostKeyChecking=no'

  alias h='< ~/.zhistory grep -i'
  alias H='< ~/.zhistory grep'

  alias g='grep -i'
  alias G='grep'

  q() {
    if [ ${#} -eq 1 ]
      /bin/ls | grep --color -i ${1} 2> /dev/null
      echo "usage: q string"

  Q() {
    if [ ${#} -eq 1 ]
      /bin/ls | grep --color ${1} 2> /dev/null
      echo "usage: Q string"

  qq() {
    if [ ${#} -eq 1 ]
      find . \
        | grep -i ${1} 2> /dev/null \
        | cut -c 3-999 \
        | grep --color -i ${1} 2> /dev/null
      echo "usage: qq string"

  QQ() {
    if [ ${#} -eq 1 ]
      find . \
        | grep ${1} 2> /dev/null \
        | cut -c 3-999 \
        | grep --color ${1} 2> /dev/null
      echo "usage: QQ string"

  dc() {
    if [ -f "${@}" ]
      cd "${@%/*}"
      return 0

    if [ -d "${@}" ]
      cd "${@}"
      return 0

    echo "${0}: no such file or directory: ${@}"
    return 1

# FUNTIONS / PORTS / ports-check()
  ports-check() {
    CUT='Major OS version upgrade detected.'
  # ${CMD} nice -n 20 portsnap auto
    ${CMD} nice -n 20 gitup ports
    ${CMD} nice -n 20 portmaster -L --index-only \
      | grep -v "${CUT}" \
      | awk '/ [Nn]ew / { print substr($0,9,9999) }'
    VULNS=$( ${CMD} pkg audit -F 2>&1 | grep ' vulnerable' | sort -u | sed 's/\ is\ vulnerable://g' )
    echo Vulnerabilities:
    if [ "${VULNS}" = "" ]
      echo None.
      echo "${VULNS}"
    pkg updating \
      -d $( date -j -f "%s" "$( pkg query -a %t | grep -v "${CUT}" | sort | tail -1 )" "+%Y%m%d" )

# FUNTIONS / PORTS / ports-rebuild()
  ports-rebuild() {
    local PORTS='multimedia/ffmpeg'
  # local PORTS='multimedia/ffmpeg audio/lame sysutils/exfat-utils sysutils/fusefs-exfat'

    for PORT in ${PORTS}
      ${CMD} pkg unlock -y ${PORT} 1> /dev/null 2> /dev/null
      ${CMD} idprio 10 env BATCH=yes DISABLE_VULNERABILITIES=yes make -C /usr/ports/${PORT} build deinstall install clean &
      ${CMD} rctl -a process:${MAKE}:pcpu:deny=40
      ${CMD} wait ${MAKE}
    # ${CMD} pkg lock -y ${PORT}

# FUNTIONS / PORTS / ports-build()
  ports-build() {
    case ${#} in
      (0) ${CMD} nice -n 20 portmaster -y --no-confirm -m 'BATCH=yes' -d -a ;;
      (*) ${CMD} nice -n 20 portmaster -y --no-confirm -m 'BATCH=yes' -d $@ ;;
    ${CMD} nice -n 20 find /var/db/pkg -type d -depth 1 -exec rm -rf {} ';' 2> /dev/null

# FUNTIONS / PKG / pkg-defunct()
  pkg-defunct() {
    pkg version -Rl\? | cut -wf1

# FUNTIONS / PORTS / pkg-version()
  pkg-version() {
    pkg version -I -l '<' | awk '{print $1}'

# FUNTIONS / PORTS / pkg-size()
  pkg-size() {
    pkg info -as | sort -k 2 -h | tail -100

  bmi() { # 1=HEIGHT 2=WEIGHT
    if [ ${#} -ne 2 ]
      echo "usage: $( basename ${0} ) HEIGHT WEIGHT"
      echo "table:"
      echo "  UNDER WEIGHT   LESS - 18.4"
      echo "  NORMAL WEIGHT  18.5 - 24.9"
      echo "  OVER WEIGHT    25.0 - 29.9"
      echo "  OBESITY        30.0 - MORE"
      return 1
    local BMI=$( echo "${2} / ( ${1} * ${1} ) * 10000" | bc -l )
    printf "%.1f\n" "${BMI}"

  bfp() {
    if [ ${#} -ne 4 ]
      echo "usage: $( basename ${0} ) HEIGHT WEIGHT AGE SEX"
      echo "SEX: f - female"
      echo "     m - male"
      return 1
    case ${4} in
      (m) SEX=1 ;;
      (f) SEX=0 ;;
    local BMI=$( echo "${2} / ( ${1} * ${1} ) * 10000" | bc -l )
    local BFP=$( echo "( 1.2 * ${BMI} ) + ( 0.23 * ${3} ) - ( 10.8 * ${SEX} ) - 5.4" | bc -l )
    printf "%.1f%%\n" "${BFP}"

  bmr() {
    if [ ${#} -ne 3 ]
      echo "usage: $( basename ${0} ) WIEGHT HEIGHT AGE"
      return 1
    local RESULT=$( echo "( 10 * ${1} ) + ( 6.25 * ${2} ) - ( 5 * ${3} ) + 5" | bc -l )
    if echo ${RESULT} | grep -q '^\.'
      echo -n 0
    echo ${RESULT} | awk -F '.' '{print $1}'

  math() {
    local SCALE=2
    local INPUT=$( echo "${@}" | tr 'x' '*' | tr ',' '.' )
    local RESULT=$( echo "scale=${SCALE}; ${INPUT}" | bc -l )
    if echo ${RESULT} | grep -q '^\.'
      echo -n 0
    echo ${RESULT}

  conv_mah_2_wh() {
    if [ ${#} -ne 2 ]
      echo "usage: $( basename ${0} ) mAh V"
      return 1
    local MAH2WH=$( echo "${1} * ${2} / 1000" | bc -l )
    printf "%.1f Wh\n" "${MAH2WH}"

  conv_wh_2_mah() {
    if [ ${#} -ne 2 ]
      echo "usage: $( basename ${0} ) Wh V"
      return 1
    local WH2MAH=$( echo "${1} / ${2} * 1000" | bc -l )
    printf "%.1f mAh\n" "${WH2MAH}"

  conv_cm_2_in() {
    if [ ${#} -ne 1 ]
      echo "usage: $( basename ${0} ) INCH"
      return 1
    local CM=$( echo "${1} / 2.54" | bc -l )
    printf "%.1f cm EQUALS %.1f inch(es)\n" "${1}" "${CM}"

  conv_in_2_cm() {
    if [ ${#} -ne 1 ]
      echo "usage: $( basename ${0} ) INCH"
      return 1
    local INCH=$( echo "${1} * 2.54" | bc -l )
    printf "%.1f inch(es) EQUALS %.1f cm\n" "${1}" "${INCH}"

  ssh_known_hosts_key_remove() {
    if [[ -z "${1}" ]]
      echo "usage: ${0} [host]"
      echo "  Removes specified host from ~/.ssh/known_hosts file."
      sed -i '' -e "/${1}/d" ${HOME}/.ssh/known_hosts

  cal() {
    if which gcal 1> /dev/null 2> /dev/null
      local TEST="${@}"
      if [ "${TEST}" = "-3" ]
        gcal -s 1 .  | sed 1,2d | sed 3d
        gcal -s 1 ${@}
      cal ${@}

  day() {
    if [ ${#} -eq 0 ]
      echo "usage: ${0##*/} DAY-OF-MONTH"
      return 1
    cal $( date +%Y ) \
      | env GREP_COLOR="07;32" grep --color=always -EC 6 " $1 |^$1 | $1\$" \
      | env GREP_COLOR="07;33" grep --color=always -B2 -A6 -E 'Mo|Tu|We|Th|Fr|Sa|Su' \
      | grep -v -- --;

  if ! which ssh-copy-id 1> /dev/null 2> /dev/null
    ssh-copy-id() {
      echo 'INFO: ssh-copy-id(1) is not available'
      echo 'HINT: cat ~/.ssh/id_rsa.pub | ssh USER@HOST "cat >> ~/.ssh/authorized_keys"'

If for any reason WordPress would mess the above config up here is the plain text version – https://raw.githubusercontent.com/vermaden/scripts/master/DOT.zshrc – available from my GitHub scripts repository.

I will not try to describe more useful parts of it. There are tons of aliases there from which these are more interesting ones.

Quickly grep(1) for IP or MAC address with grepIP or grepMAC functions respectively.

While most folks out there recommend the [CTRL]+[L] shortcut I really rarely use it. I know it and I generally advocate for those old UNIX shortcuts but for some reason the right [CTRL] key on my keyboard can not exist. I just do not use it at all. Its like in new condition on any keyboard I use. I should swap [CTRL] keys every quarter to make them look similarly used πŸ™‚

Because of that I often use ‘c‘ shortcut to clear the screen. As I was forced to use Windows in my earlier employer I also had The Microsoft equivalent for clearing the terminal – the cls command – thus you will also find an alias for that in my config – so called muscle memory is still strong πŸ™‚

Other aliases just have some arguments that are useful to add in 95% of cases.

Now some comment on the functions. There are for sure the Short Query Functions that I described in my Ghost in the Shell series. There is also additional dc alias to take me into directory where a file is. For example I have full path file under my X11 PRIMARY BUFFER. For example its /home/vermaden/gfx/wallpapers/amiga-500-grey.png value. I can now type cd and paste that buffer and then remove the amiga-500-grey.png characters with [BACKSPACE] key or type dc and then paste /home/vermaden/gfx/wallpapers/amiga-500-grey.png value and hit [ENTER] key. That alias(1) will now take me to the /home/vermaden/gfx/wallpapers/ dir.

There are several FreeBSD related commands also. Both pkg(8) or FreeBSD Ports related.

There are several that are health related such as BMI/BFP/BMR calculations that I sometimes use.

I really like the (and often use) the math function as it has the best of both worlds – the expr(1) and bc(1) commands.

There are also several functions related to conversions like converting the battery capacities between the Wh and mAh values or inches to centimeters conversions.

Similarly to the FreeBSD ls(1) command I also prefer to use the Linux (or should I say GNU) version of cal(1) command (known as gcal(1) in FreeBSD).

I also sometimes use the day function to highlight the exact day in the context of full year. Sometimes (quite rarely but still) its useful to know each occurrence of the 19 day of each month in current year. Below you will find screenshot with example.


You probably noticed the ~/.zshrc.DOAS.SUDO file at the beginning. Its about the detection of both sudo(8) and doas(1) supervisor commands. I prefer the more secure and simpler doas(1) command so when both are detected in the system then the doas(1) will be chosen as the right one.

Here are the ~/.zshrc.DOAS.SUDO contents.

% cat ~/.zshrc.DOAS.SUDO

# CHECK doas(8) WITH which(1)
if which doas 1> /dev/null 2> /dev/null

# CHECK sudo(8) WITH which(1)
if which sudo 1> /dev/null 2> /dev/null

# CHECK USER WITH whoami(1)
if [ "$( whoami )" = "root" ]

# CHOOSE ONE FROM doas(8) AND sudo(8)
if [ ${DOAS_WHICH} -eq 1 -o ${SUDO_WHICH} -eq 1 ]
  if [   ${DOAS} -eq 0 -a ${SUDO} -eq 1 -a ${SUDO_WHICH} -eq 1 ]
  elif [ ${DOAS} -eq 1 -a ${SUDO} -eq 0 -a ${DOAS_WHICH} -eq 1 ]
  elif [ ${DOAS} -eq 1 -a ${SUDO} -eq 1 -a ${DOAS_WHICH} -eq 1 ]
elif [ ${ROOT} -eq 1 ]
  echo "NOPE: This script needs 'doas' or 'sudo' to work properly."
  exit 1

unset ROOT

If for any reason WordPress would mess the above config up here is the plain text version – https://raw.githubusercontent.com/vermaden/scripts/master/DOT.zshrc.DOAS.SUDO – available from my GitHub scripts repository.


As the zsh(1) shell is very configurable there are probably at least dozen guides that make it better then me and in more depth but I just wanted to share all these with you as many of you asked what I actually use as my daily shell ‘driver’ setup.

Maybe you will be able to show me some other interesting zsh(1) tips s that would make it even more productive setup πŸ™‚

UPDATE 1 – fish(1) Coloring and Completion in zsh(1)

One of the things I likes about the fish(1) shell was its ‘predictive’ showing what command can be executed completing from command history … I now also have that in the zsh(1) shell with two additional packages from FreeBSD.

First you need to install shells/zsh-autosuggestions and shells/zsh-syntax-highlighting packages.

# pkg install -y \
shells/zsh-autosuggestions \
Updating FreeBSD repository catalogue... FreeBSD repository is up to date. All repositories are up to date. The following 2 package(s) will be affected (of 0 checked): New packages to be INSTALLED: zsh-autosuggestions: 0.7.0 zsh-syntax-highlighting: 0.7.1,1 Number of packages to be installed: 2 40 KiB to be downloaded. [1/2] Fetching zsh-autosuggestions-0.7.0.pkg: 100% 9 KiB 8.7kB/s 00:01 [2/2] Fetching zsh-syntax-highlighting-0.7.1,1.pkg: 100% 31 KiB 31.9kB/s 00:01 Checking integrity... done (0 conflicting) [1/2] Installing zsh-autosuggestions-0.7.0... [1/2] Extracting zsh-autosuggestions-0.7.0: 100% [2/2] Installing zsh-syntax-highlighting-0.7.1,1... [2/2] Extracting zsh-syntax-highlighting-0.7.1,1: 100%
===== Message from zsh-autosuggestions-0.7.0: -- Add the line below to your .zshrc to enable auto suggestions. source /usr/local/share/zsh-autosuggestions/zsh-autosuggestions.zsh
===== Message from zsh-syntax-highlighting-0.7.1,1: -- Add the line below to *the end of* your .zshrc to enable highlighting. source /usr/local/share/zsh-syntax-highlighting/zsh-syntax-highlighting.zsh

The second part of the job is to add two additional scripts to your ~/.zshrc config file as shown below.

% tail -13 ~/.zshrc

# ADDITIONAL COMPLETIONS zsh-autosuggestions
if [ -e /usr/local/share/zsh-autosuggestions/zsh-autosuggestions.zsh ]
source /usr/local/share/zsh-autosuggestions/zsh-autosuggestions.zsh

# ADDITIONAL COMPLETIONS zsh-syntax-highlighting
if [ -e /usr/local/share/zsh-syntax-highlighting/zsh-syntax-highlighting.zsh ]
source /usr/local/share/zsh-syntax-highlighting/zsh-syntax-highlighting.zsh

Now your zsh(1) shell will color the commands and also underline the existing files/directories and also showing grey additional completion of last time usage from history.


Not sure if now zsh(1) makes ALL the bells and whistles that fish(1) shell does but its definitely very small difference now if you are a big fish(1) fan πŸ™‚


Ghost in the Shell – Part 6 – Learn Shell Scripting

The Ghost in the Shell series were about efficient working in the shell environment but one of the feats of any sysadmin profession is the shell scripting. It is often needed to ‘glue’ various solutions and technologies to work as ‘Business’ requires or to fill the gap where any solution is not available – or at least not for free. It also serves a growing role in the automation of various tasks. Today I will try to show you the basics of writing POSIX /bin/sh compatible shell scripts.

You may want to check other articles in the Ghost in the Shell series on the Ghost in the Shell – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.


In your own ‘yard’ you can use any shell language you want – there are many good interactive shells like zsh(1)/bash(1)/fish(1)/ksh(1) to name a few. Just keep in mind to stay away from csh(1)/tcsh(1) shells as they are mediocre at most in interactive mode and terrible for scripting. Its really pity that csh(1)/tcsh(1) shells are still used as the default FreeBSD shells today knowing that zsh(1) is available under MIT license and could be painlessly integrated into the FreeBSD Base System – but who I am to fix all the world’s problems … I just install zsh(1) from packages and live on.

By writing POSIX /bin/sh scripts you are making sure that they will run not only on bash(1) in Linux but also on all BSD systems and all other UNIX systems out there. Even the really old dinosaurs like HP-UX or AIX.

I always struggled to find good example for learning the shell scripting but recently I got one idea and we will follow it today.

For our ‘target’ I have chosen the kldstat(8) command from FreeBSD. Its output is far from perfect (from my perspective) with showing the Size column in hexadecimal values – while sysadmin expects values in (mega/giga/tera)bytes. Our task will be to parse that kldstat(8) output into something more human readable.

Lets check that kldstat(8) output then.

% kldstat | head
Id Refs Address                Size Name
 1  133 0xffffffff80200000  1f11f28 kernel
 2    1 0xffffffff82112000   67feb0 zfs.ko
 3    1 0xffffffff82792000    1abe8 geom_eli.ko
 4    3 0xffffffff82a3c000    56ec0 vboxdrv.ko
 5    2 0xffffffff82a93000     4240 vboxnetflt.ko
 6    3 0xffffffff82a98000     aac8 netgraph.ko
 7    1 0xffffffff82aa3000     31c8 ng_ether.ko
 8    1 0xffffffff82aa7000     55e0 vboxnetadp.ko
 9    1 0xffffffff82aad000   158458 i915kms.ko

Now what does 1f11f28 tell me about kernel for the Size column. Not much.

For a start I would like to print just the Size and Name columns in our script – we will call it kld.sh for the lack of better name and I will add version ‘tag’ to its name for each of our steps like kld.0.1.sh for first and ./kld.0.2.sh for the second one and so on.

There are many ways to parse that kldstat(8) output in our script but I will discuss two approaches here.

First is to get the /bin/sh output into variable and then parse it in a loop.

Second one to parse it in a loop in pipe after the command directly. I will use the second one here because the first one – with keeping then /bin/sh output in a variable – my be useful if we want to parse it more then once and as we will parse it only once then its pointless to ‘waste’ memory for that variable. Below you will find the first draft or kld.sh.


Our first 0.1 version has only the interpreter set at the beginning (the #!/bin/sh shebang) and the simple while read loop to get output of the kldstat(8) command and print it on the screen with shell builtin echo(1) command.

% cat ./kld.0.1.sh

kldstat \
  | while read LINE
      echo "${LINE}"

Here is our script output – its generally identical as the kldstat(8) command.

% ./kld.0.1.sh | head
Id Refs Address                Size Name
1  133 0xffffffff80200000  1f11f28 kernel
2    1 0xffffffff82112000   67feb0 zfs.ko
3    1 0xffffffff82792000    1abe8 geom_eli.ko
4    3 0xffffffff82a3c000    56ec0 vboxdrv.ko
5    2 0xffffffff82a93000     4240 vboxnetflt.ko
6    3 0xffffffff82a98000     aac8 netgraph.ko
7    1 0xffffffff82aa3000     31c8 ng_ether.ko
8    1 0xffffffff82aa7000     55e0 vboxnetadp.ko
9    1 0xffffffff82aad000   158458 i915kms.ko


As we know that kldstat(8) has fixed number of columns we can read its more intelligently with variables names as its columns and print only Size and Name columns as we wanted it in the first place. We should also omit the first line of kldstat(8) output as we will be printing our own header for just Size and Name columns. We will achieve that with sed(1) command.

Here is out script after our improvements.

% cat kld.0.2.sh

echo "SIZE NAME"
kldstat \
  | sed 1d \
      echo "${SIZE} ${NAME}"

Here is its output at current early stage.

% ./kld.0.2.sh | head
1f11f28 kernel
67feb0 zfs.ko
1abe8 geom_eli.ko
56ec0 vboxdrv.ko
4240 vboxnetflt.ko
aac8 netgraph.ko
31c8 ng_ether.ko
55e0 vboxnetadp.ko
158458 i915kms.ko

As you can see the columns are not aligned so we can use column(1) command to make it look more like original command.

% ./kld.0.2.sh | column -t | head
1f11f28  kernel
67feb0   zfs.ko
1abe8    geom_eli.ko
56ec0    vboxdrv.ko
4240     vboxnetflt.ko
aac8     netgraph.ko
31c8     ng_ether.ko
55e0     vboxnetadp.ko
158458   i915kms.ko

But typing that each time we execute our script can be PITA so we will now use printf(1) instead of echo(1) to print our output. We will also alight the first Size column to the right to make the command output even more human readable. We will sacrifice 8 places of width for the Size column (%8s) and the rest with aligned to left (%-s) for Name column.


Here is our improved script.

% cat kld.0.3.sh

printf "%8s %-s\n" SIZE NAME
kldstat \
  | sed 1d \
      printf "%8s %-s\n" ${SIZE} ${NAME}

Our output now looks like that one below.

% ./kld.0.3.sh | head
   1f11f28 kernel
    67feb0 zfs.ko
     1abe8 geom_eli.ko
     56ec0 vboxdrv.ko
      4240 vboxnetflt.ko
      aac8 netgraph.ko
      31c8 ng_ether.ko
      55e0 vboxnetadp.ko
    158458 i915kms.ko

Better. Now we will improve two things. First we will start keeping our output format ("%8s %-s\n") in a separate variable and we will finally convert that hexadecimal values into decimal ones – to bytes – there are many ways to do that but I am leaning to use the printf(1) builtin because both of speed and it being available in the shell (builtin).


Here is the script.

% cat kld.0.4.sh

FORMAT="%8s %-s\n"
printf "${FORMAT}" SIZE NAME
kldstat \
  | sed 1d \
      SIZE=$( printf "%d" 0x${SIZE} )
      printf "${FORMAT}" ${SIZE} ${NAME}

And its output with bytes instead of hexadecimal values.

% ./kld.0.4.sh | head
  32579368 kernel
   6815408 zfs.ko
    109544 geom_eli.ko
    356032 vboxdrv.ko
     16960 vboxnetflt.ko
     43720 netgraph.ko
     12744 ng_ether.ko
     21984 vboxnetadp.ko
   1410136 i915kms.ko

Now we have output in bytes and its nicely formatted. Its even easily sortable by the sort(1) command so its leaning nicely with UNIX principles.

% ./kld.0.4.sh | sort -n | head
      8432 coretemp.ko
      8504 cd9660_iconv.ko
      8504 msdosfs_iconv.ko
      8504 udf_iconv.ko
      8576 smbus.ko
      8736 cpuctl.ko
      8800 pty.ko
      9000 lindebugfs.ko
      9024 uhid.ko

The next step would be to print that information in megabytes instead of just plain bytes. To convert bytes into kilobytes we need to divide our bytes value by 1024. To get the megabytes we need to do it twice. We will use the $(( ... )) syntax to use the shell builtin for simple math calculations instead of dropping that task to a subshell with $( ... ) syntax and external commands.


This is our ‘show in megabytes only’ script looks like.

% cat kld.0.5.sh

FORMAT="%8s %-s\n"
printf "${FORMAT}" SIZE NAME
kldstat \
  | sed 1d \
      SIZE=$( printf "%d" 0x${SIZE} )
      SIZE=$(( ${SIZE} / 1024 / 1024 ))
      printf "${FORMAT}" ${SIZE} ${NAME}

And here is its output.

% ./kld.0.5.sh | head
        31 kernel
         6 zfs.ko
         0 geom_eli.ko
         0 vboxdrv.ko
         0 vboxnetflt.ko
         0 netgraph.ko
         0 ng_ether.ko
         0 vboxnetadp.ko
         1 i915kms.ko

That did not wend too well, didn’t it? Because many module use less then 1 megabytes of memory after being rounded to natural numbers its 0 megabytes value for many modules. We will try to use bc(1) calculator instead with up to tenths precision.


Here is out script after using bc(1) instead of using the $(( ... )) syntax with dividing.

% cat kld.0.6.sh

FORMAT="%8s %-s\n"
printf "${FORMAT}" SIZE NAME
kldstat \
  | sed 1d \
      SIZE=$( printf "%d" 0x${SIZE} )
      SIZE=$( echo "scale=1; ${SIZE} / 1024 / 1024" | bc -l )
      printf "${FORMAT}" ${SIZE} ${NAME}

And here is its output.

% ./kld.0.6.sh | head
      31.0 kernel
       6.4 zfs.ko
        .1 geom_eli.ko
        .3 vboxdrv.ko
         0 vboxnetflt.ko
         0 netgraph.ko
         0 ng_ether.ko
         0 vboxnetadp.ko
       1.3 i915kms.ko

Far from ideal. The bc(1) output omits the leading zero if value is less then one. Seems that we can fix that with different printf(1) formatting. Lets try that. We will change from %8s (string) into %8.1f (float). That will also force us to use different formats for header and values so will stop using single FORMAT variable and we will use separate ones.


This is our current script state.

% cat kld.0.7.sh

HEAD_FORMAT="%8s %-s\n"
LOOP_FORMAT="%8.1f %-s\n"
kldstat \
  | sed 1d \
      SIZE=$( printf "%d" 0x${SIZE} )
      SIZE=$( echo "scale=1; ${SIZE} / 1024 / 1024" | bc -l )
      printf "${LOOP_FORMAT}" ${SIZE} ${NAME}

And its output.

% ./kld.0.7.sh | head
      31.0 kernel
       6.4 zfs.ko
       0.1 geom_eli.ko
       0.3 vboxdrv.ko
       0.0 vboxnetflt.ko
       0.0 netgraph.ko
       0.0 ng_ether.ko
       0.0 vboxnetadp.ko
       1.3 i915kms.ko

Works as advertised. We can now think of something different. How about we will also add an argument to include the kernel and modules file sizes as well? Not very useful I think but for the the purpose of shell scripting learning process we will do it anyway. The first caveat here is that kernel modules are on two locations on FreeBSD. The Base System modules are kept at /boot/kernel location and the modules that were installed by pkg(8) packages (or from FreeBSD Ports) are located at /boot/modules place. To get their size we will use the stat(1) command. Similarly like with memory usage – we would like to have the output of kernel and its modules size in megabytes.

There are of course several ways to achieve that. Lets start with the longest most educational example below. I will just paste the fragment that gets that kernel or module size for the FILE column.

if [ -f /boot/modules/${NAME} ]
  FILE=$( stat -f %z /boot/modules/${NAME} )

if [ -f /boot/kernel/${NAME} -a -z ${NAME} ]
  FILE=$( stat -f %z /boot/kernel/${NAME} )

if [ "${FILE}" = "" ]

FILE=$( echo "scale=1; ${FILE} / 1024 / 1024" | bc -l )

One note about the [ "${FILE}" = "" ] syntax – in all old POSIX shells out there that I used /bin/sh always worked well with that syntax when FILE variable was empty or non existing. In a extreme example this one – [ "" = "" ] – works as desired. In case if you find yourself in a situation when this does not work in some POSIX /bin/sh implementation then use the most secure variant with additional same word added to both sides like that – [ "${FILE}test" = "test" ] – this way even the most badly written POSIX /bin/sh implementation will work πŸ™‚

It first checks the /boot/modules location for the module because I know a period of FreeBSD history in which the i915kms.ko module existed in both of these places and if you had them both then there is 99% percent chance that you are using the one installed by packages – that is why we try the third party modules first – then the ones from the Base System place. We also make sure that if for some reason the file will not be found the stat(1) command would not yield about its missing with 2> /dev/null at the end of command.

If we fail to find it under the third party modules then we will try the Base System location – but only when we did not find anything in the third party place – hence the additional test with -z ${NAME}.

For the record the syntax for these tests is:

  • for single test its like that: [ TEST ]
  • to test for both parameters (AND operator) its like that: [ TEST1 -a TEST ]
  • for only one of tests to pass (OR operator) its like that: [ TEST1 -o TEST ]

If we fail to find the file size then we set that to ‘‘ value.

At the end we divide by 1024 two times so we get megabytes from bytes.

This can be shortened to to take less place (and writing) into something like that.

[ -f /boot/modules/${NAME} ]              && FILE=$( stat -f %z /boot/modules/${NAME} 2> /dev/null )
[ -f /boot/kernel/${NAME} -a -z ${NAME} ] && FILE=$( stat -f %z /boot/kernel/${NAME}  2> /dev/null )
[ ${FILE} = "" ]                          && FILE=-
FILE=$( echo "scale=1; ${FILE} / 1024 / 1024" | bc -l )

The end result is the same but it requires less space and writing. I also added some spaces for ‘logical formatting’ to make it more readable.

There is also more extreme way to shorten this up while keeping the same logic – here it is.

FILE=$( stat -f %z /boot/kernel/${NAME}  2> /dev/null \
     || stat -f %z /boot/modules/${NAME} 2> /dev/null \
     || FILE=- )
FILE=$( echo "scale=1; ${FILE} / 1024 / 1024" | bc -l )

We use then || OR operator in the subshell to make that shorter and still keep it readable. This is the version that we will use in our script.


Lets see now how it looks after modifications.

% cat kld.0.8.sh

HEAD_FORMAT="%8s %8s %-s\n"
LOOP_FORMAT="%8.1f %8.1f %-s\n"
kldstat \
  | sed 1d \
      FILE=$( stat -f %z /boot/kernel/${NAME}  2> /dev/null \
           || stat -f %z /boot/modules/${NAME} 2> /dev/null \
           || FILE=- )
      FILE=$( echo "scale=1; ${FILE} / 1024 / 1024" | bc -l )
      SIZE=$( printf "%d" 0x${SIZE} )
      SIZE=$( echo "scale=1; ${SIZE} / 1024 / 1024" | bc -l )
      printf "${LOOP_FORMAT}" ${SIZE} ${FILE} ${NAME}

And here is its output.

% ./kld.0.8.sh | head
    31.0     27.7 kernel
     6.4      5.0 zfs.ko
     0.1      0.1 geom_eli.ko
     0.3      0.4 vboxdrv.ko
     0.0      0.0 vboxnetflt.ko
     0.0      0.1 netgraph.ko
     0.0      0.0 ng_ether.ko
     0.0      0.0 vboxnetadp.ko
     1.3      2.2 i915kms.ko

Its interesting to see that used memory and file size are different.

Another step would be printing also the summary of the used RAM for each column. This is where things get more interesting. The while loop is created in a pipe which means its in a subshell. This has some serious implications. Normally we would add two variables like SIZE_TOTAL and FILE_TOTAL to add each module size there and then after the loop ends just print the summary. Because the while loop is spawned as subshell these variables will vanish as soon as the loop will end its life and these variables would not exist (they existed only in that while subshell).

But fear not – there is very clever way with file descriptor to have these variables exist with their values after the while loop ends. Below you will find the shortened prototypes of our currently used ‘pipe’ way and the ‘descriptor’ way.

This is the way you already know.

kldstat \
  | sed 1d \
  | while read LINE
      echo "${LINE}"
      TOTAL="Now You Don't."

echo ${TOTAL}

When you will execute that you will NOT see the "Now You Don't." string.

Now this is the way to overcome that subshell limitation.

while read LINE
  echo "${LINE}"
  TOTAL="Now You See Me."
done << BSD
  $( kldstat | sed 1d )

echo ${TOTAL}

As you try it you will see the "Now You See Me." sign at the end.

This way we will provide summary for each column.


This is our code after our effort to add summary for the columns. You may noticed that we added the FILE_TOTAL and SIZE_TOTAL before the FILE and SIZE values are converted to megabytes. That ensures we are as accurate as possible. If we would just sum up the SIZE and FILE after they were converted to megabytes we would lost several bytes in the process.

% cat kld.0.9.sh

HEAD_FORMAT="%8s %8s %-s\n"
LOOP_FORMAT="%8.1f %8.1f %-s\n"
  FILE=$( stat -f %z /boot/kernel/${NAME}  2> /dev/null \
       || stat -f %z /boot/modules/${NAME} 2> /dev/null \
       || FILE=- )
  FILE=$( echo "scale=1; ${FILE} / 1024 / 1024" | bc -l )
  SIZE=$( printf "%d" 0x${SIZE} )
  SIZE=$( echo "scale=1; ${SIZE} / 1024 / 1024" | bc -l )
  printf "${LOOP_FORMAT}" ${SIZE} ${FILE} ${NAME}
done << BSD
  $( kldstat | sed 1d )
FILE_TOTAL=$( echo "scale=1; ${FILE_TOTAL} / 1024 / 1024" | bc -l )
SIZE_TOTAL=$( echo "scale=1; ${SIZE_TOTAL} / 1024 / 1024" | bc -l )

This is how its execution looks like.

% ./kld.0.9.sh | (head -5; echo '(...)'; tail -5)
    31.0     27.7 kernel
     6.4      5.0 zfs.ko
     0.1      0.1 geom_eli.ko
     0.3      0.4 vboxdrv.ko
     0.0      0.0 linsysfs.ko
     0.0      0.0 fdescfs.ko
     0.0      0.0 nullfs.ko
     0.0      0.0 acpi_ibm.ko
    40.9     39.5 TOTAL

As you can see I also used shell feature to pipe output into many commands at once – this allows us to show information that is most important to use – beginning and ending – for the summary.

We even can do nested piping as shown on the screenshot below.


I deliberately used head(1) for entire guide because I have total of 42 kernel modules loaded. I did not wanted these outputs to overshadow our objective here. Here at the end I will show you complete output for the sake of it.

% kldstat | wc -l

% ./kld.0.9.sh
    31.0     27.7 kernel
     6.4      5.0 zfs.ko
     0.1      0.1 geom_eli.ko
     0.3      0.4 vboxdrv.ko
     0.0      0.0 vboxnetflt.ko
     0.0      0.1 netgraph.ko
     0.0      0.0 ng_ether.ko
     0.0      0.0 vboxnetadp.ko
     1.3      2.2 i915kms.ko
     0.4      0.8 drm.ko
     0.0      0.0 linuxkpi_gplv2.ko
     0.0      0.0 lindebugfs.ko
     0.0      0.1 fusefs.ko
     0.0      0.0 coretemp.ko
     0.0      0.0 sem.ko
     0.0      0.0 cpuctl.ko
     0.0      0.0 ichsmb.ko
     0.0      0.0 smbus.ko
     0.0      0.0 cuse.ko
     0.0      0.0 libiconv.ko
     0.0      0.0 cd9660_iconv.ko
     0.0      0.0 msdosfs_iconv.ko
     0.0      0.0 udf_iconv.ko
     0.0      0.0 udf.ko
     0.0      0.0 acpi_wmi.ko
     0.0      0.0 uhid.ko
     0.0      0.0 usbhid.ko
     0.0      0.0 hidbus.ko
     0.0      0.0 wmt.ko
     0.0      0.0 ums.ko
     0.1      0.2 ng_btsocket.ko
     0.0      0.0 ng_bluetooth.ko
     0.2      0.6 linux.ko
     0.0      0.1 linux_common.ko
     0.1      0.5 linux64.ko
     0.0      0.0 pty.ko
     0.0      0.0 linprocfs.ko
     0.0      0.0 linsysfs.ko
     0.0      0.0 fdescfs.ko
     0.0      0.0 nullfs.ko
     0.0      0.0 acpi_ibm.ko
    40.9     39.5 TOTAL

% kldstat
Id Refs Address                Size Name
 1  133 0xffffffff80200000  1f11f28 kernel
 2    1 0xffffffff82112000   67feb0 zfs.ko
 3    1 0xffffffff82792000    1abe8 geom_eli.ko
 4    3 0xffffffff82a3c000    56ec0 vboxdrv.ko
 5    2 0xffffffff82a93000     4240 vboxnetflt.ko
 6    3 0xffffffff82a98000     aac8 netgraph.ko
 7    1 0xffffffff82aa3000     31c8 ng_ether.ko
 8    1 0xffffffff82aa7000     55e0 vboxnetadp.ko
 9    1 0xffffffff82aad000   158458 i915kms.ko
10    1 0xffffffff82c06000    7f548 drm.ko
11    2 0xffffffff82c86000     cbc8 linuxkpi_gplv2.ko
12    2 0xffffffff82c93000     2328 lindebugfs.ko
13    1 0xffffffff82c96000    11f10 fusefs.ko
14    1 0xffffffff82ca8000     20f0 coretemp.ko
15    1 0xffffffff82cab000     39e8 sem.ko
16    1 0xffffffff82caf000     2220 cpuctl.ko
17    1 0xffffffff82cb2000     3250 ichsmb.ko
18    1 0xffffffff82cb6000     2180 smbus.ko
19    1 0xffffffff82cb9000     6730 cuse.ko
20    4 0xffffffff82cc0000     4798 libiconv.ko
21    1 0xffffffff82cc5000     2138 cd9660_iconv.ko
22    1 0xffffffff82cc8000     2138 msdosfs_iconv.ko
23    1 0xffffffff82ccb000     2138 udf_iconv.ko
24    1 0xffffffff82cce000     5a00 udf.ko
25    1 0xffffffff82cd4000     3378 acpi_wmi.ko
26    1 0xffffffff82cd8000     2340 uhid.ko
27    1 0xffffffff82cdb000     3380 usbhid.ko
28    1 0xffffffff82cdf000     31f8 hidbus.ko
29    1 0xffffffff82ce3000     3320 wmt.ko
30    1 0xffffffff82ce7000     4350 ums.ko
31    1 0xffffffff82cec000    1ce48 ng_btsocket.ko
32    1 0xffffffff82d09000     25a8 ng_bluetooth.ko
33    1 0xffffffff82d0c000    388f8 linux.ko
34    4 0xffffffff82d45000     db70 linux_common.ko
35    1 0xffffffff82d53000    30ac8 linux64.ko
36    1 0xffffffff82d84000     2260 pty.ko
37    1 0xffffffff82d87000     639c linprocfs.ko
38    1 0xffffffff82d8e000     3284 linsysfs.ko
39    1 0xffffffff82d92000     3530 fdescfs.ko
40    1 0xffffffff82d96000     4700 nullfs.ko
41    1 0xffffffff82d9b000     41d8 acpi_ibm.ko


This concludes this Ghost in the Shell episode.

Feel free to share your scripting habits and spells πŸ™‚


FreeBSD Desktop – Part 25 – Configuration – Random Terminal Theme

Some time ago when I was mostly writing about Openbox setup I also showed how to setup xterm(1) so it will start with new random theme with each start. Since then I reworked that feature a little and also added random theme and background selection for urxvt(1) terminal. This post will guide you through the needed steps to make that setup working.


You may want to check other articles in the FreeBSD Desktop series on the FreeBSD Desktop – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.

I already once wrote about random xterm(1) themes in the FreeBSD Desktop – Part 12 – Configuration – Openbox part – but I really wanted to expand that topic and also include other terminals.

After trying many terminal emulators – some more bulky like Konsole/GNOME Terminal/XFCE Terminal/MATE Terminal – some more lightweight like st(1)/rox-term(1)/eterm(1)/… – I always went back to the most old-school and basic one – good old xterm(1) terminal. Mostly because of its good compatibility with all UNIX systems – especially the older ones like IBM AIX or HP-UX. I do not remember last time when I had to manage these archaic systems but the respect for xterm(1) remains.


The other one that always got my attention was urxvt(1) terminal. Unfortunately it has some issues with fonts rendering – making larger spaces between the lines and making fonts bigger for example – but as I also like bitmap fonts like CLEAN or FIXED – so I use bitmap fonts for urxvt(1).

Recently also sakura(1) got my attention – but it’s theming possibilities are even more limited then xterm(1) with themes/colors hardcoded directly into the source code. That is why I will omit it in this article – but I mention it since its also nice terminal.

This is the Table of Contents for this article.

  • xterm(1)
    • Proper Font Selection
    • Selecting Text for Copy/Paste
    • Selection Buffers and Keyboard Shortcuts
    • Increase/Decrease Font Size on the Fly
    • Copy/Paste with [CTRL]+[SHIFT]+[C/V]
    • Interactive Menus
    • Random xterm(1) Theme
  • urxvt(1)
    • Tabbed Interface
    • Daemon and Client Mode
    • Random urxvt(1) Theme and Background
  • sakura(1)
    • Different sakura(1) Themes
  • RAM Usage Comparison
  • CPU Time Usage Comparison


First lest start with some reasonable configuration in the ~/.Xdefaults file. Alternatively some people use ~/.Xresources file. You can use any of them. Just pick one and stick to it.

! -----------------------------------------------------------------------------
  xterm*allowBoldFonts:     true
  xterm*allowWindowOps:     true
  xterm*boldMode:           false
  xterm*charClass:          33:48,35:48,37:48,43:48,45-47:48,64:48,95:48,126:48,35:48,58:48,63:48,61:48,44:48,38:48,59:48
  xterm*cursorBlink:        false
  xterm*cutNewline:         true
  xterm*faceName:           consolas
  xterm*faceSize:           11
  xterm*fastScroll:         true
  xterm*fullscreen:         false
  xterm*iconHint:           /home/vermaden/.icons/vermaden/xterm.xpm
  xterm*internalBorder:     1
  xterm*jumpScroll:         true
  xterm*keepSelection:      true
  xterm*loginShell:         true
  xterm*metaSendsEscape:    true
  xterm*multiScroll:        true
  xterm*omitTranslation:    fullscreen
  xterm*on4Clicks:          group
  xterm*on5Clicks:          page
  xterm*saveLines:          1024000
  xterm*scaleHeight:        1.0
  xterm*scrollKey:          true
  xterm*scrollTtyOutput:    false
  xterm*selectToClipboard:  true
  xterm*SimpleMenu*font:    -*-clean-*-*-*-*-*-*-*-*-*-*-iso8859-2
  xterm*termName:           xterm-256color
  xterm*title:              xterm
  xterm*veryBoldColors:     14
  xterm*VT100*geometry:     150x40
  xterm*VT100*translations: #override                                             \n\
                            <btn1up>: select-end(PRIMARY, CLIPBOARD, CUT_BUFFER0) \n\
                            Ctrl <key> minus: smaller-vt-font()                   \n\
                            Ctrl <key> plus: larger-vt-font()                     \n\
                            Ctrl Shift <key> C: copy-selection(CLIPBOARD)         \n\
                            Ctrl Shift <key> V: insert-selection(CLIPBOARD)

I will not discuss all possible settings as they are well described in the xterm(1) man page but I will comment some more useful and interesting ones.

Proper Font Selection

This advice is not limited to xterm(1) but its worth to mention it. Many times after adding fonts to my system – and renaming them to my ‘standard’ which looks like that one below I was asking myself how to properly specify the variant I need.

% ls -1 ~/.fonts/ubuntu-mono*

The answer to that question comes with fc-match(1) from fontconfig package. Check my ‘queries’ below.

% fc-match consolas:bold
consolas-bold.ttf: "Consolas" "Bold"

% fc-match consolas     
consolas.ttf: "Consolas" "Regular"

% fc-match consolas:bold:italic
consolas-bold-italic.ttf: "Consolas" "Bold Italic"

Selecting Text for Copy/Paste

The xterm*charClass defines which sets of characters should be treated the same when doing cut and paste. Especially with double-clicking the text. The setting above I use is based on 15 years of experience and seems to work best. You are of course encouraged to investigate the CHARACTER CLASSES section of the xterm(1) man page to read more on this topic.

The xterm*on4Clicks and xterm*on5Clicks are not used by default while xterm*on2Clicks are predefined as word and xterm*on3Clicks as line values. This is why I added them so you can select entire group with xterm*on4Clicks and entire page with xterm*on5Clicks option. Alternatively you can also use some fancy regex for some of these ‘CLICKS’ but I never thought about a REGEX that would be useful here – maybe you will come with something sensible.

Here are these ‘CLICKS’ in action.

First the xterm*on2Clicks with word selection. This is when the xterm*charClass is taken into account – what is word and that is not πŸ™‚


Then xterm*on3Clicks with line selection.


Now xterm*on4Clicks with group selection.


Finally the xterm*on5Clicks entire page selection.


Selection Buffers and Keyboard Shortcuts

The last interesting option is xterm.VT100.translations which is used for keyboard shortcuts.

The first one select-end(PRIMARY, CLIPBOARD, CUT_BUFFER0) is better described in the https://davidsimmons.com/soft/xtermhacks/ page from 2005. I will try to short the meritum here. The X11 applications have two different selection buffers:

CLIPBOARD – selection buffer used for cut/paste functions – you select/highlight text and then select Copy from context menu or use [CTRL]+[C] shortcut. Then you use Paste or [CTRL]+[C] shortcut.

PRIMARY – this one receives data when user selects/highlights text with mouse. None other operations such as Copy or Paste are needed. You end selecting the text and its already in PRIMARY buffer. You then paste it with MIDDLE mouse button.

Using the option above selecting/highlighting the text in xterm(1) copies the text into both selection buffers simultaneously. You can now either Paste it info Firefox or hit MIDDLE mouse button to paste it in other xterm(1) terminal. Best of both worlds.

If that setting does not suit you then use the xterm*selectToClipboard instead. When set to true it copies selected text to CLIPBOARD buffer and when set to false it copies selection to the PRIMARY one.

Increase/Decrease Font Size on the Fly

I always missed the shortcuts to decrease or increase font size on the fly in xterm(1) and for many years I believed that its just not possible and then I found some blog post (do not remember which one now of course) in which I found these settings and started to use them.

They are smaller-vt-font() and larger-vt-font() for decrease and increase respectively with [CTRL]+[-] and [CTRL]+[+] shortcuts – keep in mind that [SHIFT] is not used here.

Copy/Paste with [CTRL]+[SHIFT]+[C/V]

If by some reason you prefer to copy and paste by using [CTRL]+[SHIFT]+[C] and [CTRL]+[SHIFT]+[V] shortcuts then copy-selection(CLIPBOARD) and insert-selection(CLIPBOARD) will do the needed job here. As you probably guessed you can use PRIMARY instead of CLIPBOARD here if that is what you desire.

Interactive Menus

The xterm(1) comes with three different interactive menus. I will now show all three of them here with screenshots.

Menu displayed with clicking [CTRL]+[LEFT-MOUSE-BUTTON] in the terminal area.


Menu displayed with clicking [CTRL]+[MIDDLE-MOUSE-BUTTON] in the terminal area.


Menu displayed with clicking [CTRL]+[RIGHT-MOUSE-BUTTON] in the terminal area.


Random xterm(1) Theme

To have random xterm(1) theme on every startup you need four things:

I gathered all these themes all over the Internet, only the VERMADEN and VERMADEN-OLD themes are created by me.

Little preview of some of the included xterm(1) themes.


From now on to have random xterm(1) theme at each start always start it with ~/scripts/xterm.sh script. The script itself is not very complicated. It just draws random theme from the ~/.config/Xdefaults/themes dir – then loads the ~/.Xdefaults config – then merges the colors from chosen random theme – and finally starts new xterm(1) instance.



I use urxvt(1) less often but still sometimes I want to use bitmap fonts instead.


For a start here is the urxvt(1) configuration in the ~/.Xdefaults file.

! -----------------------------------------------------------------------------
  urxvt.letterSpace:    0.0
! urxvt.font:           xft:monaco:pixelsize=9,style=regular,minspace=True
  urxvt.font:           -*-clean-*-*-*-*-*-*-*-*-*-*-iso8859-2
  urxvt.boldFont:       -*-clean-*-*-*-*-*-*-*-*-*-*-iso8859-2
  urxvt.iconFile:       /home/vermaden/.icons/vermaden/xterm.xpm
  urxvt.geometry:       150x40
  urxvt.cutchars:       ,;
  urxvt.scrollBar:      false
  urxvt.imLocale:       en_US.UTF-8
  urxvt.loginShell:     true
  urxvt.saveLines:      1024000
  urxvt.inheritPixmap:  false
  urxvt.shading:        20
  urxvt.xftAntialias:   true
  urxvt.jumpScroll:     true
  urxvt.tintColor:      black
  urxvt.internalBorder: 2
  urxvt.cursorBlink:    false
  urxvt.cursorColor:    #dd9900
  urxvt.cursorColor2:   #000000
  urxvt.colorBD:        #dddddd
  urxvt.colorIT:        #bbbbbb
  urxvt.colorUL:        #999999
  urxvt.underlineColor: #999999

Tabbed Interface

To get tabs in urxvt(1) add the following option to the ~/.Xdefaults configuration file.

  urxvt.perl-ext-common:   default,tabbed

With this option you will open new tab with [SHIFT]+[DOWN] shortcut.

To switch between the tabs left and right use [CTRL]+[SHIFT]+[LEFT] and [CTRL]+[SHIFT]+[RIGHT] shortcut respectively.

You can also use [CTRL]+[LEFT] and [CTRL]+[RIGHT] to move current tab left and right.

The timeless [CTRL]+[D] – which of course is not a strictly urxvt(1) shortcut but a general shortcut for closing all terminals.


Daemon and Client Mode

The urxvt(1) can be run in special daemon mode where you start one urxvtd(1) server and many urxvtc(1) clients.

% urxvtd
rxvt-unicode daemon listening on /home/vermaden/.urxvt/urxvtd-w520.local.

Now you will start each new urxvt(1) terminal with urxvtc(1) command.

The drawback of that approach is that when urxvtd(1) dies or crashes then also all your urxvtc(1) client terminals disappear πŸ™‚

Random urxvt(1) Theme and Background

To have random urxvt(1) theme and background on every startup you need four things:

Little preview of some of the included urxvt(1) themes and backgrounds.


From now on to have random urxvt(1) theme at each start always start it with ~/scripts/urxvt.sh script. The script for urxvt(1) is little more advanced. First it draws random theme from the ~/.config/Xdefaults/themes dir – then checks if its DARK or LIGHT theme – then draws either random LIGHT or DARK background from the ~/.config/Xdefaults/urxvt dir – finally loads the ~/.Xdefaults config and then merges the colors from chosen LIGHT or DARK theme. Of course then it finally starts new urxvt(1) instance.



The more modern and GTK based sakura(1) also supports tabs. To open new tab use [CTRL]+[SHIFT]+[T] shortcut. To switch between the tabs use [CTRL]+[ALT]+[LEFT] and [CTRL]+[ALT]+[RIGHT] shortcuts. You can also move tab between left and right with [CTRL]+[SHIFT]+[LEFT] and [CTRL]+[SHIFT]+[RIGHT].


One things that sakura(1) impresses me is that you can scale down its window and then scale that window up and the contents that did not fit in the window after downscalling are back again in the terminal. Doing the same operation in xterm(1) or urxvt(1) terminals will result in these characters being lost. The output is also dynamically ‘fit’ into the new larger window while maintaining the new lines etc. Besides that nice feature it is small and fast and uses relatively small amount of RAM.


Different sakura(1) Themes

If you would also like to start sakura(1) with different theme everytime the options are quite limited here. The palettes and color sets are hardcoded into the sakura(1) source code.

I will not show you how to modify them using the FreeBSD Ports system.

The sakura(1) port is located at /usr/ports/x11/sakura directory. For the record – I use WRKDIRPREFIX option in the /etc/make.conf file. This means that when I type make extract in the /usr/ports/x11/sakura dir the work directory will not be created at /usr/ports/x11/sakura/work directory but at /usr/ports/obj/usr/ports/x11/sakura/work instead. That way I can clean my Ports tree fast by removing the /usr/ports/obj directory.

We will now extract and patch the sakura(1) port on FreeBSD.

% grep WRKDIRPREFIX /etc/make.conf

# cd /usr/ports/x11/sakura

# make patch

# cd /usr/ports/obj/$( pwd )/work/*/src || cd work/*/src

# pwd

# grep -m 1 DEFAULT_PALETTE sakura.c
#define DEFAULT_PALETTE "tango"

# grep -o -E '[a-z]+_palette\[PALETTE_SIZE\]' sakura.c

As you can see the default sakura(1) palette is Tango. Fortunately you can use palette=solarized_dark option in the ~/.config/sakura/sakura.conf config file to change it into Solarized Dark for example.

Besides hardcoded palettes sakura(1) also has several Color Sets.

If you would like to make random theme (from the hardcoded ones) for each start you would have to use this syntax with prepared dedicated config files for each palette.

% sakura --config-file ~/.config/sakura/sakura.solarized_dark.conf --colorset 1 
% sakura --config-file ~/.config/sakura/sakura.tango.conf          --colorset 3

I do not use sakura(1) that much so I was too lazy to write random startup theme script also for it πŸ™‚

Changing sakura(1) palette or color set manually is shown below.




RAM Usage Comparison

Just started xterm(1) terminal takes about 16 MB or RAM as you have seen on the urxvt(1) screenshots. The urxvt(1) started without tabs uses more then 2 TIMES of xterm(1) terminal RAM usage. The urxvt(1) started in tabbed mode uses more then 3 TIMES of xterm(1) terminal RAM usage. The sakura(1) also uses more then 3 TIMES of xterm(1) terminal RAM usage.

Table below shows RAM usage comparison. I have added more feature packed mate-terminal(1) to the list and also added the st(1) minimalistic terminal from Suckless project for compassion.

    64  mate-terminal
    53  sakura
    52  urxvt (tabbed)
    38  urxvt
    16  xterm
    12  st

CPU Time Usage Comparison

I also made simple benchmark of the CPU used. The ‘benchmark’ was to check how much time each terminal would take to print output ofΒ  dmesg | lolcat -b -r command. Here xterm(1) does not shine that much.

0:00.93  xterm
0:00.82  mate-terminal
0:00.52  sakura
0:00.43  urxvt
0:00.23  st

The above ‘benchmark’ was was quite ‘hard’ because of all the colors generated by lolcat(1) command. Lets try something more practical now. We will measure CPU time used to display out of the find find /usr/local/share/doc command.

0:01.34  xterm
0:01.18  mate-terminal
0:00.85  sakura
0:00.32  urxvt
0:00.28  st

Seems that lolcat(1) was not that ‘hard’. The st(1) minimalistic terminal really seems to suck less here πŸ™‚


Ghost in the Shell – Part 5

The Ghost in the Shell series were quite neglected while I was busy writing about other things. Its about time to continue the series. I hope you are not mad at me because of it. Here are another few things that I think some of you may find useful.

You may want to check other articles in the Ghost in the Shell series on the Ghost in the Shell – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.

Less More Useful

From all less(1) command line options I find these very handy.

Often when you pass some command output to less(1) you loose color. To keep color in the less(1) output use --raw-control-chars (or -r for short equivalent) option.

The other useful less(1) option I find useful is --chop-long-lines (or -S for short equivalent) which prevents line wrapping. You can of course scroll horizontally to see what does not fit on the screen.

While less(1) is a command line program it also has a very nice --mouse option – with this option you can scroll its output with your mouse wheel. How cool is that? You can even specify how many lines you want to scroll with --wheel-lines=n options where ‘n is as you probably guessed the number of scrolled lines.

It may be also useful to make less(1) quit if you want to display file that its contents fits in the current console screen – use --quit-if-one-screen for that.

Often people when they want to just view some config files they use vi(1) (or their other favorite ${EDITOR} that they use) – even if they do not intend to edit the file. Its better to open such file in less(1) and if you find out that you would want to edit the file hit the ‘v char while being at less(1) – it will open that file in your ${EDITOR} for editing.

You can also display line number in less(1) with --LINE-NUMBERS option (or use -N for shorter equivalent).

Detox These Filenames

Often when copying files from various sources the filenames may become corrupt in the process – mostly because of differences in encodings. To fix that very fast one may use detox(1) command. On FreeBSD systems its available as sysutils/detox package. Because the FILE you will be renaming almost for sure contains some special characters or spaces then its best to add quotation marks as shown below.

% detox "FILE"

Of course detox(1) renames one file at a time so to rename all files in the current directory we will use simple loop.

% for FILE in *; do detox "${FILE}"; done

If you want to also include subdirectories the do the following.

% find . -type f -exec detox {} ';'

If you do not want to limit yourself to files only (fix directories names also) then – as Mandalorian would say – this is the way.

% find . -exec detox {} ';'

Man Up the Info Pages

In the learning process of mastering UNIX systems one has to get used to reading man(1) pages and often getting back to re-reading them when needed. Like with many other things the GNU folks wanted to do things in their own way – seems they did not liked the man(1) pages that much as they created info(1) pages as an alternative. I dunno about you but IMHO info(1) pages does not feel like the UNIX way … maybe it’s because GNU is a recursive acronym for GNU IS NOT UNIX πŸ™‚

However there is an elegant way to convert any info(1) page into man(1) page by piping the info(1) page output into less(1) command – or other ${PAGER} that you use.

% info ls | less

Real UNIX Sorting

After you setup your UNIX environment the LC_ALL environment variable is mostly set to some UTF variant – like en_us.utf-8 for example. That has implications as names of files and directories are now sorted case insensitively. To get back to original case sensitive UNIX sorting you can use the LC_ALL variable set ‘C‘. You can use that on the fly or make it permanent by adding it to your shell configuration. For example with ls(1) command shown below.

% ls -1

% env LC_ALL=C ls -1

Faster Better Uptime

When you want check for how long system was running we usually use uptime(1) command.

% uptime
8:15PM  up 5 days,  4:42, 4 users, load averages: 0.71, 0.76, 0.82

But you can type just one letter instead of six and get even more info – the w(1) command. It also includes information about other active sessions to this system – which comes handy because you want to know if someone else can try to fix or configure the same things as you intend to.

% w
8:15PM  up 5 days,  4:42, 4 users, load averages: 0.77, 0.78, 0.83
vermaden   pts/0    :0     Thu10PM  3:09 -zsh (zsh)
szasstam   pts/1    :0     Sun08PM 1day  -zsh (zsh)
edwin      pts/2    :0      7:04PM     - -zsh (zsh)
larloch    pts/3    :0      7:56PM     - w

Filter Huge Files

When you start grep(1) to filter really big file – like several gigabytes in size for example – the grep(1) command uses locale from LC_ALL and LANG variables – which as you probably guess right know from the context of this sentence – slows things down.

You can modify both LC_ALL and LANG on the fly to ‘C‘ value to make that grep(1) really fast – and when I mean fast I mean sometimes you will gain several orders of magnitude.

% env LC_ALL=C LANG=C grep string HUGEFILE

That is all for this episode. Hope you liked it.


Ghost in the Shell – Part 4

Long time no see. Its been a while since last post in the Ghost in the Shell series. Its also exactly one full year since I started this blog – from the first Ghost in the Shell series article – the Part 1 – that was published on 2018/03/15 day.

Today I would like to show you new pack of useful tricks and features for productive terminal/shell use. Lets start with something simple yet useful.

You may want to check other articles in the Ghost in the Shell series on the Ghost in the Shell – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.

Named Pipes

We all (or at least most :>) know and love pipes in UNIX. For the record – ls | grep match | awk '{print $3}' | sed 's/.jpg//g' – command ‘chains’ like that one πŸ™‚

What is a named pipe then? A manually defined pipe for special purposes. For example some applications – especially the so called Enterprise ones – often do not support UNIX pipes mechanisms – they only can dump something to a file. A great example of such Enterprise software is Oracle database whose dump command can only make dump to a file. With tool that supports UNIX pipes you would probably want to pipe that data to gzip(1)/xz(1) to compress it on the fly or even pipe it directly to ssh(1) to the Backup server for example, but not with Oracle.

This is where named pipes feature helps. We will create named pipe called /tmp/PIPE so Oracle’s dump command will be able to use it and on the other side of this pipe we will attach a pipe to gzip -9 command to compress that data on the fly.

Below example is from Linux system so mknod(1) command will be used. For example on FreeBSD you would use mkfifo(1) command for named pipe. Complete example of such named pipe is presented below.

root # cd /tmp
root # mknod /tmp/PIPE p
root # chown oracle:oinstall /tmp/PIPE
root # dd if=/tmp/PIPE bs=1M | gzip -9 > /mnt/oracle/oracle-database-backup.dmp.gz &

Now the /tmp/PIPE named pipe is ready to be used. When any process will start to write something to the /tmp/PIPE named pipe it will be automatically grabbed by dd(8) command and piped to the gzip(1) command that will compress that input and write it into the /mnt/oracle/oracle-database-backup.dmp.gz file.

Now we can start the Oracle dumping process with dump command.

root # su - oracle
oracle % dump file=/tmp/PIPE

When the dump command finishes its work you will find all your dumped data compressed in the /mnt/oracle/oracle-database-backup.dmp.gz file.

Other example of named pipes usage is my desktop dzen2 setup with unusual update schedule – described in detail in the FreeBSD Desktop – Part 13 – Configuration – Dzen2 article.

Modify Command Environment on the Fly

For most of the time we use export(1) builtin to export needed environment values that our command needs. You can then check what environment exported values are with the env(1) command of course … but you can use the same env(1) command to run any command with modified environment without exporting variables using export(1).

Here is brief example of this feature.

For the record – the gls(1) command is a GNU/Linux ls(1) command from sysutils/coreutils package/port but to make it work without name conflicts on FreeBSD where BSD ls(1) is also present it had to be renamed to gls(1).

% gls -l | head -1
total 8609K

% env LC_ALL=pl_PL.UTF-8 gls -l | head -1
razem 8609K

In the example above we run gls(1) command with default environment – I use en_US.UTF-8 locale daily. The second invocation with LC_ALL=pl_PL.UTF-8 modified environment made gls(1) command display its output in Polish (pl_PL.UTF-8) language. The word ‘razem‘ means ‘total‘ in Polish.

Other useful example may be using make(1) to build FreeBSD port with known vulnerabilities. By default FreeBSD’s build(7) system will not allow us to build such port (and that is good defaults) but if we know what we are doing we will use following spell.

# env DISABLE_VULNERABILITIES=yes make -C /usr/ports/security/bdes/ build install clean

Its also useful with commands that do not play well with UTF-8 input like tr(1) for example. When LC_ALL is set to en_US.UTF-8 it will throw an error upon as.

% tr -cd '0-9' < /dev/random | head -c 16
tr: Illegal byte sequence

We just wanted to generate random 16 numbers.

To make it work we will modify the LC_ALL environment for this invocation.

% env LC_ALL=C tr -cd '0-9' < /dev/random | head -c 16

Much better πŸ™‚

Other example with timezones using date(1) command and TZ variable as shown in the example below.

% date
Fri Mar 15 14:03:38 CET 2019

% env TZ=Australia/Darwin date 
Fri Mar 15 22:35:26 ACST 2019

The Real Path

The symlinks with ln(1) are very useful for many ways, to organize stuff, for quick fixes, for versioning … you will find tons of other use cases.

There is just one problem, if you make to many levels or symlinks or its just too much nested you do not know where you are anymore … this is where the realpath(1) comes handy. No matter how many levels of links you have made, it will tell you the truth – what is the current real path. The pwd(1) command will not help you here thou.

Here is a short example how it works.

% pwd
% ln -s /home/vermaden ASD
% cd ASD
% pwd
% realpath

Browsing the PATH

Many times I wanted to ‘browse’ through the PATH to search for something. As you possibly know the PATH variable stores paths that are colon (:) separated.

You can redefine the IFS variable which by default contains space ‘ ‘ which will work as field delimited for the for loop.

Here is the example.

% export IFS=":"

% for I in $( echo ${PATH} ); do echo ${I}; done

% for I in $( echo ${PATH} ); do find "${I}" -name ifconfig; done

The other way to do this is to use plain old tr tool to translate colons (:) into newlines (\n) so we will be able to use the while loop here.

Here is the tr(1) example.

% echo ${PATH} | tr ':' '\n' | while read I; do echo ${I}; done

% echo ${PATH} | tr ':' '\n' | while read I; do find ${I} -name dd; done

You can also achieve same thing using the Parameter Expansion in which we will change the colons (:) into newlines (\n) as shown in the example below.

% echo "${PATH//:/\n}"

# echo "${PATH//:/\n}" | while read I; do find ${I} -name camcontrol; done

Parameter Expansion

I will not show all possible Parameter Expansion methods – just the most useful ones.

The typical use is to get the extension of a file or to ’emulate’ basename(1) or dirname(1) commands – it will be faster to use Parameter Expansion instead of invoking these commands each time. Below are two tables showing what you will get from which Parameter Expansion method.

PARAMETER    RESULT                       DESC 
-----------  ---------------------------  --------------
${name}      kubica.polish.racing.legend  content
${name#*.}          polish.racing.legend  -
${name##*.}                       legend  extension
${name%%.*}  kubica                       -
${name%.*}   kubica.polish.racing         -

… and with slash (/) character.

PARAMETER    RESULT                       DESC 
-----------  ---------------------------  --------------
${name}      kubica/polish/racing/legend  content
${name#*/}          polish/racing/legend  -
${name##*/}                       legend  basename(1)
${name%%.*}  kubica                       root directory
${name%/*}   kubica/polish/racing         dirname(1)

You can also use Parameter Expansion methods to grab the protocol from an URL like shown below.

% URL="https://vermaden.wordpress.com"

% echo "${URL%%/*}"

Sort Human Readable Values

Its simple and easy to sort just numerical values, we use sort -n for that – but values sometimes comes in human readable form like 4G, 350M and 120K. To sort these properly you will have to use sort -h flag as shown in the example below.

% du -sh /usr/*
102M    /usr/bin
228G    /usr/home
9.0M    /usr/include
 53M    /usr/lib
 43M    /usr/lib32
116K    /usr/libdata
1.9M    /usr/libexec
365M    /usr/local
512B    /usr/obj
9.5M    /usr/sbin
 39M    /usr/share
251K    /usr/tests

% du -sh /usr/* | sort -h
512B    /usr/obj
116K    /usr/libdata
251K    /usr/tests
1.9M    /usr/libexec
9.0M    /usr/include
9.5M    /usr/sbin
 39M    /usr/share
 43M    /usr/lib32
 53M    /usr/lib
102M    /usr/bin
365M    /usr/local
228G    /usr/home

If the values are in the first column then its simple but what to do when the values are not in the first column? You will use -k parameter of sort(1) which takes which column to sort as argument. Needed example below sorted bu human readable values and on the second USED column.

% zfs list | sort -h -k 2
NAME                         USED  AVAIL  REFER  MOUNTPOINT
local/usr/obj                 88K   130G    88K  /usr/obj
local/var/cache/pkg          128K   130G   128K  /var/cache/pkg
local/var/cache              216K   130G    88K  none
local/var                    304K   130G    88K  none
sys/ROOT/11.1-RELEASE        482M  2.39G  6.04G  /
local/usr/ports              729M   130G   729M  /usr/ports
local/jail/nextcloud         927M   130G   897M  /jail/nextcloud
local/jail                  1.00G   130G   100M  /jail
local/usr/src               1.28G   130G  1.28G  /usr/src
local/usr                   1.99G   130G    88K  none
sys/ROOT/11.2-RELEASE       8.69G  2.39G  7.10G  /
sys/ROOT                    9.16G  2.39G    88K  none
sys                         9.17G  2.39G    88K  none
local/home                   281G   130G   281G  /home
local                        288G   130G    88K  none

Write a File from vi(1) with Different Rights

How many times you have opened a system configuration file like /etc/sysctl.conf or /etc/fstab in your favorite vi(1) editor, made some changes and then when you wanted to save it – no luck – you are trying to write to file owned by root with regular user … the Read-only file, not written; use ! to override. message will be displayed. Of course you can save that file somewhere else like your home directory and them move it with doas(1)/sudo(8)/su(8) help to original location and fix its rights … or you may do that in one step instead.

After opening a file with vi(1) and some changes to write a file with doas(1)/sudo(8) rights you just need to type this.

:w !doas tee %

Then exit the vi(1) editor with force.


Here is how it looks in the editor.

:w !doas tee %

File contents are displayed here.

Press any key to continue [: to enter more ex commands]: [ENTER]

Here is the ‘legend’ for that spell.

:      vi(1) prompt
w      write a file
!doas  invoke doas(1) command
tee    command that will be started using doas(1) command
%      tells vi(1) to use current filename

In this process the current vi(1) contents will be redirected using tee(1) with doas(1) rights to the current (open that you opened) filename.

Of course it also works in vim(1) or neovim(1) and if sudo(8) is your poison then just use sudo instead doas(1) there.

Search Contents of PDF Files

We all love plain text files then they can be searched using grep(1) for data that is interesting for us … but grep(1) does not work with PDF files … or should I say its pointless/useless to use grep(1) to search PDF files. Fortunately pdfgrep(1) command exists and works beautifully with PDF files – including colored output.

Recently FreeBSD Journal has been made free and you will like to search for bhyve articles in FreeBSD Journal issues then this is the command for you.

% cd books/unix-bsd-journal
% exa
FreeBSD Journal - 2014-01-02.pdf FreeBSD Journal - 2016-09-10.pdf
FreeBSD Journal - 2014-03-04.pdf FreeBSD Journal - 2016-11-12.pdf
FreeBSD Journal - 2014-05-06.pdf FreeBSD Journal - 2017-01-02.pdf
FreeBSD Journal - 2014-07-08.pdf FreeBSD Journal - 2017-03-04.pdf
FreeBSD Journal - 2014-09-10.pdf FreeBSD Journal - 2017-05-06.pdf
FreeBSD Journal - 2014-11-12.pdf FreeBSD Journal - 2017-07-08.pdf
FreeBSD Journal - 2015-01-02.pdf FreeBSD Journal - 2017-09-10.pdf
FreeBSD Journal - 2015-03-04.pdf FreeBSD Journal - 2017-11-12.pdf
FreeBSD Journal - 2015-05-06.pdf FreeBSD Journal - 2018-01-02.pdf
FreeBSD Journal - 2015-07-08.pdf FreeBSD Journal - 2018-03-04.pdf
FreeBSD Journal - 2015-09-10.pdf FreeBSD Journal - 2018-05-06.pdf
FreeBSD Journal - 2015-11-12.pdf FreeBSD Journal - 2018-07-08.pdf
FreeBSD Journal - 2016-01-02.pdf FreeBSD Journal - 2018-09-10.pdf
FreeBSD Journal - 2016-03-04.pdf FreeBSD Journal - 2018-11-12.pdf
FreeBSD Journal - 2016-05-06.pdf FreeBSD Journal - 2019-01-02.pdf
FreeBSD Journal - 2016-07-08.pdf

% pdfgrep -i -n bhyve *.pdf
FreeBSD Journal - 2014-01-02 - Old Release.pdf:6: machine hypervisors, such as BHy
FreeBSD Journal - 2014-01-02 - Old Release.pdf:6: BHyVe
FreeBSD Journal - 2014-01-02 - Old Release.pdf:6: BHyVe IS THE BSD Hypervisor, de
FreeBSD Journal - 2014-01-02 - Old Release.pdf:6: Grehan and Neel Natu. The desig
FreeBSD Journal - 2014-01-02 - Old Release.pdf:6: BHyVe requires Intel CPUs w
FreeBSD Journal - 2014-01-02 - Old Release.pdf:6: BHyVe appeared in FreeBSD 1
FreeBSD Journal - 2014-01-02.pdf:42: machine hypervisors, such as BHyVe, Virtual
FreeBSD Journal - 2014-01-02.pdf:42: BHyVe e d
FreeBSD Journal - 2014-01-02.pdf:42: BHyVe IS THE BSD Hypervisor, developed by P
FreeBSD Journal - 2014-01-02.pdf:42: Grehan and Neel Natu. The design goal of BH
FreeBSD Journal - 2014-01-02.pdf:42: BHyVe requires Intel CPUs with VT-x and
FreeBSD Journal - 2014-01-02.pdf:42: BHyVe appeared in FreeBSD 10-CURRENT in

Here is how it looks in the xterm(1) terminal.


Hope that today’s pack of spells will end up useful for you.


Ghost in the Shell – Part 3

Time to bring some life into the Ghost in the Shell series with Part 3 article.

You may want to check other articles in the Ghost in the Shell series on the Ghost in the Shell – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.

Query Functions

I haven’t found better name for that solution. There are generally two types of UNIX people. These that prefer to navigate and operate with basic ls/cd/mv/mkdir/rm commands and those who use some file manager like Midnight Commander (mc) or ranger or vifm or … you get the idea. I have tried various CLI file managers but always came back to navigate without them. If you are one of those people then these Query Functions are for you πŸ™‚

The so called Query Functions are for filter the information you look for. For example if you have directory with large number of files, then you would probably do something like that.

% ls | grep QUERY

… or if you also want to include subdirectories then something like that.

% find . | grep QUERY

For both of these examples you would also probably want to sometimes search case sensitive or insensitive depending on the need.

That leads us to four Query Functions:

  • q is an equivalent of ls | grep -i QUERY command.
  • Q is an equivalent of ls | grep QUERY command.
  • qq is an equivalent of find . | grep -i QUERY command.
  • QQ is an equivalent of find . | grep QUERY command.

Thus if I need to query the contents of directory while searching for something is very fast with q SOMETHING.

These are definitions of these Query Functions:

  q() {
    if [ ${#} -eq 1 ]
      ls | grep --color -i ${1} 2> /dev/null
      echo "usage: q string"
  Q() {
    if [ ${#} -eq 1 ]
      ls | grep --color ${1} 2> /dev/null
      echo "usage: Q string"

  qq() {
    if [ ${#} -eq 1 ]
      find . \
        | grep -i ${1} 2> /dev/null \
        | cut -c 3-999 \
        | grep --color -i ${1} 2> /dev/null
      echo "usage: qq string"

  QQ() {
    if [ ${#} -eq 1 ]
      find . \
        | grep ${1} 2> /dev/null \
        | cut -c 3-999 \
        | grep ${1} 2> /dev/null
      echo "usage: QQ string"

The qq and QQ functions uses grep(1) two times to make sure the output is colored.

I assume that You use colored grep(1) described in Ghost in the Shell – Part 2 article.

If you prefer to use alias(1) instead then they would look like that.

  alias q="ls | grep --color -i"
  alias Q="ls | grep --color"
  alias qq="find . | grep -i"
  alias QQ="find . | grep"

The qq and QQ will be little more limited as with functions its possible to trim the output to the exact needs with cut(1).



Lots of people use recursive history search which also helps, but what if you used/typed needed command long ago with the arguments you need now? You would probably search the command with history(1) command and then using grep(1) to limit the results to what you look for. I keep enormous large list of commands to keep in history – with my current setting of 655360 the ~/.zhistory (ZSH) file takes about 2.7 MB size. I also wanted to be sure that two identical commands would not be kept in history hence the setopt hist_ignore_all_dups ZSH option enabled. When I wc -l my ~/.zhistory file it currently has 75695 lines of commands.

% grep HISTSIZE /usr/local/etc/zshrc
export HISTSIZE=655360

% grep dups /usr/local/etc/zshrc
setopt hist_ignore_all_dups

Now back to Query Functions for history:

  • h is an equivalent of cat ~/.zhistory | grep -i QUERY command.
  • H is an equivalent of cat ~/.zhistory | grep QUERY command.

They fit in aliases this time. In alias(1) we will use just grep(1) to not ‘do’ Useless Use of Cat.

Here are the Query Functions for history.

  alias h='< ~/.zhistory grep -i'
  alias H='< ~/.zhistory grep'


… but what if we would like to filter the outputs of q family and h family Query Functions? The obvious response is using grep(1) like q QUERY | grep ANOTHER or h QUERY | grep ANOTHER for example. To make that faster we will make g and G shortcuts.

  • g is an equivalent of grep -i command.
  • G is an equivalent of just grep command.

Here they are.

  alias g='grep -i'
  alias G='grep'

Now it will be just q QUERY | g ANOTHER and h QUERY | G ANOTHER for example.

To clear terminal output you may use clear(1) command, some prefer [CTRL]-[L] shortcut but I find ‘c‘ alias to be the fastest solution.

  alias c='clear'

To make the solution complete I would also add exa(1) here with an alias of ‘e‘.

  alias e='exa --time-style=long-iso --group-directories-first'

Why exa(1) will you ask while there is BSD ls(1) and GNU ls(1) (installed as gls(1) on FreeBSD to not confuse). To add GNU ls(1) to FreeBSD system use the coreutils package.

Well, the BSD ls(1) has two major cons:

  • It is not able to sort directories first.
  • It selects width for ALL columns based on single longest file name.


The BSD ls(1) was used as following alias:

alias ls='ls -p -G -D "%Y.%m.%d %H:%M"'

The GNU ls(1) does not have these two problems but it does color the output only on the very limited pattern like:

  • Not executable file.
  • Executable file.
  • Directory.
  • Link.
  • Device.


The GNU ls(1) was used as following alias:

gls -p -G --color --time-style=long-iso --group-directories-first --quoting-style=literal

Here is where exa(1) comes handy as it does not have any cons like FreeBSD’s ls(1) and it colors a lot more types of files.


exa --time-style=long-iso --group-directories-first

Its still very simple coloring based on file extension and not magic number as plain (empty) text file SOME-NOT-FILE.pdf is colored like PDF document.


But even this ‘limited’ coloring helps in 99% of the cases and while with BSD ls(1) and GNU ls(1) all of these files ‘seem’ like plain text files with exa(1) its obvious from the start which are plain files, which are images and which are ‘documents’ like PDF files for example.

Where Is My Space

On all UNIX and Linux systems there exists du(1) command. Combined with sort(1) it is universal way of searching for space eaters. Example for the / root directory with -g flag to display units in gigabytes.

# cd /
# du -sg * | sort -n
1       bin
1       boot
1       compat
1       data
1       dev
1       entropy
1       etc
1       lib
1       libexec
1       media
1       mnt
1       net
1       proc
1       rescue
1       root
1       sbin
1       sys
1       tmp
1       var
2       jail
8       usr
305     home

Contents of UNIX System Resources directory with -m flag to display unit in megabytes.

# cd /usr
# du -sm * | sort -n
1       libdata
1       obj
1       tests
3       libexec
11      sbin
13      include
45      lib32
56      lib
58      share
105     bin
1080    ports
1343    src
5274    local

But its PITA to type cd and du all the time, not to mention that some oldschool UNIX systems does not provide -g or -m flags so on HP-UX you are limited to kilobytes at most.

You may also try -h (human readable) with sort -h (sort human readable) du(1) variant.

# du -smh * | sort -h
512B    data
512B    net
512B    proc
512B    sys
4.5K    entropy
5.5K    dev
6.5K    mnt
 53K    media
143K    tmp
205K    libexec
924K    bin
2.2M    etc
3.9M    root
4.6M    sbin
6.2M    rescue
6.6M    lib
 90M    boot
117M    compat
564M    jail
667M    var
5.4G    usr
297G    home

This is where ncdu(1) comes handy. Its ncurses based disk usage analyzer which helps finding that space eaters in very fast time without typing the same commands over and over again. Here is ncdu(1) in action.

First it calculates the sizes of the files.


After a while you get the output sorted by size.


If you hit [ENTER] on the directory you will be instantly moved into that directory.


If you delete something with ‘d‘ then remember to recalculate the output with ‘r‘ letter.

It also has great options such as spawning shell ‘b‘ in the current directory or toggle between apparent size and disk usage with ‘a‘ option. The latter is very useful when you use filesystem with builtin compression like ZFS.

       up, k  Move cursor up
     down, j  Move cursor down
 right/enter  Open selected directory
  left, <, h  Open parent directory
           n  Sort by name (ascending/descending)
           s  Sort by size (ascending/descending)
           C  Sort by items (ascending/descending)
           d  Delete selected file or directory
           t  Toggle dirs before files when sorting
           g  Show percentage and/or graph
           a  Toggle between apparent size and disk usage
           c  Toggle display of child item counts
           e  Show/hide hidden or excluded files
           i  Show information about selected item
           r  Recalculate the current directory
           b  Spawn shell in current directory
           q  Quit ncdu

The apparent size using the du(1) command.

Disk usage.

% du -sm books
39145   books

Apparent size.

% du -smA books
44438   books

So I have 1.13 compression ratio on the ZFS filesystem. More then 5 GB saved just in that directory πŸ™‚

Where Are My Files

Once I got some space back I also wanted to know if there are some directories with enormous amount of very small files.

First I came up with my own files-count.sh script solution which is not that long.

#! /bin/sh

export LC_ALL=C

if [ ${#} -eq 0 ]

find "${DIR}" -type d -maxdepth 1 -mindepth 1 \
  | cut -c 3- \
  | while read I
      find "${I}" | wc -l | tr -d '\n'
      echo " ${I}"
    done | sort -n

It works reliably but same as with du | sort tandem you have to retype it (or at least use cd(1) and hit [UP] arrow again) … but then I discovered that ncdu(1) also counts files! It does not provide ‘startup’ argument to start in this count files mode but when you hit ‘c‘ letter it will instantly display count of files in each scanned directory. To sort this output by the count of files hit the ‘C‘ letter (large ‘C‘ letter).


The files-count.sh script still has one advantage over ncdu(1) – the latter stops counting files at 100k which is shown on the screenshot so if You need to search for really big amount of files or just about 100k then files-count.sh script will be more accurate/adequate.

% cd /usr
% files-count.sh 
       1 obj
      36 libdata
     299 sbin
     312 libexec
     390 tests
     498 bin
     723 lib32
     855 lib
    2127 include
   16936 share
  159945 src
  211854 ports
  266021 local

… but what if there were some very big files hidden somewhere deep in the directories tree? The du(1) or ncdu(1) will not help here. As usual I though about short files-big.sh script that will do the job.

#! /bin/sh

export LC_ALL=C

if [ ${#} -eq 0 ]

find "${DIR}" -type f -exec stat -f "%16z; doas rm -f \"%N\"" {} ';' | sort -n

An example usage on the /var directory.

# cd /var
# files-big.sh | tail
        10547304; doas rm -f "./tmp/kdecache-vermaden/icon-cache.kcache"
        29089823; doas rm -f "./db/clamav/clamav-2671b72fce703c2133c61e5bf85aad19.tmp/clamav-373e311ca7f610a39c7cf5c5c5a4fd83.tmp/daily.hdb"
        30138884; doas rm -f "./tmp/pkg-provides-wyK2"
        48271360; doas rm -f "./db/pkg/repo-HardenedBSD.sqlite"
        54816768; doas rm -f "./db/pkg/repo-FreeBSD.sqlite"
        66433024; doas rm -f "./db/pkg/local.sqlite"
        82313216; doas rm -f "./db/clamav/clamav-2671b72fce703c2133c61e5bf85aad19.tmp/clamav-373e311ca7f610a39c7cf5c5c5a4fd83.tmp/daily.hsb"
       117892267; doas rm -f "./db/clamav/main.cvd"
       132431872; doas rm -f "./db/clamav/daily.cld"
       614839082; doas rm -f "./db/pkg/provides/provides.db"

The output is in ‘executable’ format so if you select whole line and paste it into terminal, then this file will be deleted. By default it uses doas(1) but nothing can stop you from putting sudo(8) there. Not sure if you will find it useful but it helped me at least dozen times.

How Many Copies Do You Keep

I often find myself keeping the same files in several places which also wastes space (unless you use ZFS deduplication of course).

The dedup.sh script I once made is little larger so I will not paste it here and just put a link to it.

It has the following options available. You may search/compare files by name or size (fast) or by its MD5 checksum (slow).

% dedup.sh
usage: dedup.sh OPTION DIRECTORY
  OPTIONS: -n   check by name (fast)
           -s   check by size (medium)
           -m   check by md5  (slow)
           -N   same as '-n' but with delete instructions printed
           -S   same as '-s' but with delete instructions printed
           -M   same as '-m' but with delete instructions printed
  EXAMPLE: dedup.sh -s /mnt

Simple usage example.

% cd misc/man
% cp zfs-notes zfs-todo
% dedup.sh -M .
count: 2 | md5: 4ff4be66ab7e5484de2bf7c168ff995a
  doas rm -rf "./zfs-notes"
  doas rm -rf "./zfs-todo"

count: 2 | md5: 6d87f5b1317ea189165fcdc71380735c
  doas rm -rf "./x11"
  doas rm -rf "./xinit"

By copying the zfs-notes file into the zfs-todo file I wanted to show you what dedup.sh will print on the screen, but accidentally I also found another duplicate πŸ™‚

The output of dedup.sh is simple and like with files-big.sh script selecting the while line and pasting it into the terminal will remove the duplicate. By default it uses doas(1) but you can change it into sudo(8) if that works better for you.

Unusual cron(1) Intervals

Most of us already remember what the five fields of crontab(5) file mean, but what if you would like to run command every second … or after reboot only? The answer lies in the man 5 crontab page. Here are these exotic options.

string          meaning
------          -------
@reboot         Run once, at startup of cron.
@yearly         Run once a year, "0 0 1 1 *".
@annually       (same as @yearly)
@monthly        Run once a month, "0 0 1 * *".
@weekly         Run once a week, "0 0 * * 0".
@daily          Run once a day, "0 0 * * *".
@midnight       (same as @daily)
@hourly         Run once an hour, "0 * * * *".
@every_minute   Run once a minute, "*/1 * * * *".
@every_second   Run once a second.

Check cron(1) Environment

Many times I found myself lost lots of time debugging what went wrong when my script was run by the crontab(5) file. Often it was some variable missing or some command or script I used was not in the PATH variable.

To make that debugging faster You can use ENV.sh script to just store the cron(1) environment.

% cat ENV.sh
env > /tmp/ENV.out

The ENV.sh script will write current environment in the /tmp/ENV.out file.

Lets put it into the crontab(5) for a test.

% crontab -l | grep ENV
@every_second ~/ENV.sh

Now after at most a second you can check for the contents of the /tmp/ENV.out file.

% cat /tmp/ENV.out

Now you can easily debug the scripts run by the crontab(5) … at least on the environment part πŸ™‚

Simple HTTP Server

I found myself many times in a situation that I would want to allow download of some files from my machine and SSH could not be used.

This is when python(1) comes handy. It has SimpleHTTPServer (or http.server in Python 3 version) so you can instantly start HTTP server in any directory!

Here are the commands for both Python versions.

  • Python 2.x – python -m SimpleHTTPServer PORT
  • Python 3.x – python -m http.server PORT

I even made a simple http.sh wrapper script to make it even more easy.

#! /bin/sh

if ${#} -ne 1 ]
  echo "usage: ${0##*/} PORT"
  exit 1

python -m SimpleHTTPServer ${1}

Example usage.

% cd misc/man
% http.sh 8080
Serving HTTP on port 8080 ... - - [14/Sep/2018 23:06:50] "GET / HTTP/1.1" 200 - - - [14/Sep/2018 23:06:50] code 404, message File not found - - [14/Sep/2018 23:06:50] "GET /favicon.ico HTTP/1.1" 404 - - - [14/Sep/2018 23:09:15] "GET /bhyve HTTP/1.1" 200 -

To stop it simply hit [CTRL]-[C] interrupt sequence.

Here is how it looks in the Epiphany browser.


Simple FTP Server

Similarly with FTP service, another Python goodie called pyftpdlib (Python FTP Server Library) provides that.

Mine ftp.py wrapper is little bigger as you can write quite comlicated setups with pyftpdlib but mine is simple, it starts in the current directory and adds read only anonymous user and read/write user named writer with WRITER password.

#! /usr/bin/env python

from sys                   import argv,exit
from pyftpdlib.authorizers import DummyAuthorizer
from pyftpdlib.handlers    import FTPHandler
from pyftpdlib.servers     import FTPServer

if len(argv) != 2:
  print "usage:", argv[0], "PORT"
authorizer = DummyAuthorizer()
authorizer.add_user("writer", "WRITER", ".", perm="elradfmw")
handler = FTPHandler
handler.authorizer = authorizer
handler.passive_ports = range(60000, 60001)
address = ("", argv[1])
ftpd = FTPServer(address, handler)

The ftp.py is handy if you want to enable someone to upload something for you (or you are doing it o the other machine) when SSH/SCP is not possible for some reason.

To stop it simply hit [CTRL]-[C] interrupt sequence.

Here is its terminal startup and logs.

% cd misc/man
% ftp.py 2121
[I 2018-09-14 23:21:53] }}} starting FTP server on, pid=64399 {{{
[I 2018-09-14 23:21:53] concurrency model: async
[I 2018-09-14 23:21:53] masquerade (NAT) address: None
[I 2018-09-14 23:21:53] passive ports: 60000->60000

… and how Firefox renders its contents.


Hope you will find some of these useful, see you at Part 4 some day.

UPDATE 1 – More Short Functions

As time flies by I also added several other ‘short functions’ that make my life easier. They are related to mine Universal File Opener named see.sh.
This is the part that I added to mine ~/.zshrc shell config.

  alias s='see.sh'
  alias o='see-pipe-open.sh'

The additional see-pipe-open.sh helper script is meant to be used in pipes to open all files from stdin.
Example below

% ls
bsd.1.pdf  bsd.2.pdf  bsd.png  unix.1.pdf  unix.2.pdf  NOTES.txt

% q bsd

% q bsd | g pdf

% q bsd | g pdf | o
// see.sh will open bsd.1.pdf with mupdf(1)
// see.sh will open bsd.2.pdf with mupdf(1)

Now – the q bsd | g pdf | o will open bsd.1.pdf and bsd.2.pdf files according to what is configured in the see.sh handler. In my case it mupdf(1) would be used to open both of them.

As for the other s shortcut – its just faster to type s bsd.1.pdf than see.sh bsd.1.pdf to open a file at terminal πŸ™‚



Ghost in the Shell – Part 2

The article in the Ghost in the Shell series was the first post on my blog, so while I was busy by writing various server related articles and recently the FreeBSD Desktop series its about time for the Part 2 of the Ghost in the Shell series.

You may want to check other articles in the Ghost in the Shell series on the Ghost in the Shell – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.

Lets start with something simple – yet powerful and time saving.

Alias with Arguments

One may of course write any function to do similar job, but keeping track and ‘maintaining’ all those functions becomes complicated and one has to organize itself. This partially applies to aliases, but they are smaller and easier to maintain then whole functions. In any modern shell an alias(1) can also have arguments, while You will not be able to parse them as appropriate as with functions, they do the job for their basic use.

Here is an example of such alias(1) with arguments.

% ls
gfx/ info/ misc/ scripts/ tmp/

% alias lsg='ls | grep'

% lsg gfx

Color grep(1) Patterns

As we already ‘touched’ the grep(1) command topic, lets make it more usable by highlighting the found results in color. The ${GREP_COLOR} variable is used for that purpose and it expects a number for a color, here is the table with number-color format.

Color    Number
Black    30
Red      31
Green    32
Yellow   33
Blue     34
Magenta  35
Cyan     36
White    37

You may as well use ‘bold’ output by adding ‘1;‘ before the number, for example.

% echo ${GREP_COLOR}

You will also have to make an alias(1) to grep(1) with --color argument, like that:

% alias grep='grep --color'

Here is how it looks in practice.

% export GREP_COLOR=31
% alias grep='grep --color'
% dmesg | grep SMP
FreeBSD/SMP: Multiprocessor System Detected: 2 CPUs
FreeBSD/SMP: 1 package(s) x 2 core(s)
SMP: AP CPU #1 Launched!

Here is how it looks on the xterm(1) terminal.


Process Management

This one is very useful on any UNIX system, does not matter if its server or desktop.

These are commands and operands that will help us manage processes started by hand:

  • &
  • fg
  • bg
  • jobs
  • kill
  • disown
  • nohup
  • [CTRL]+[Z]
  • [CTRL]+[C]

As you probably already know to start command ‘in the background’ – which means do what I tell you but do not block the terminal – you have to add ‘&‘ (ampersand) at the end of such command. That command does not magically go away and as long as its running its visible by the jobs(1) command. You may use ‘-l‘ switch to also show the PID of background processes.

% galculator &
[1] 8449

% jobs
[1]  + running    galculator

% jobs -l
[1]  + 8449 running    galculator

Now, what of you forget to add ‘&‘ (ampersand) at the end of command but you wanted to put it into the background? Hit [CTRL]+[Z] shortcut (Control key with ‘small’ Z letter) and the process will be put into the suspended state. Now you have several options, you can out that process into the background with bg(1) command – by default it uses last suspended job – %1, you can also bring it back into the foreground blocking the terminal with fg(1) command. You can also list its state with jobs(1) and of course kill(1) it either with PID showed by jobs -l command or by specifying the process number – %1 in that case.

Here is an example.

% galculator
zsh: suspended  galculator

% jobs
[1]  + suspended  galculator

% bg
[1]  + continued  galculator

% jobs -l
[1]  + 72892 running    galculator

% kill %1
[1]  + terminated  galculator


While fg(1) and bg(1) allow you to put command in the background or foreground respectively when the process is in suspended state, one may ask how to ‘switch’ a process to suspended state while its already running in the background. Its done with kill -17 signal called SIGSTOP. You can also bring back such suspended process to running state with kill -19 signal called SIGCONT … or just again use fg(1) or bg(1) command. Other difference between fg(1)/bg(1) commands and more ‘direct’ kill -17/kill -19 commands are that kill(1) does not inform the user what has changed to the process. You may as well use kill -SIGCONT syntax or kill -s SIGCONT if that is more readable for you.

% galculator
zsh: suspended  galculator

% bg
[1]  + continued  galculator

% xcalc
zsh: suspended  xcalc

% jobs -l
[1]  - 19537 running    galculator
[2]  + 20563 suspended  xcalc

% kill -17 %1
[1]  + suspended (signal)  galculator

% jobs -l
[1]  + 19537 suspended (signal)  galculator
[2]  - 20563 suspended  xcalc

% kill -SIGCONT %1
% bg %2
[2]  - continued  xcalc

% jobs -l
[1]  + 19537 running    galculator
[2]  - 20563 running    xcalc

Also check man kill and man signal for more information.

What about disown(1) then? Its a ‘magic’ helper when you start some long running jobs directly at the terminal without Screen or Tmux and you need to disconnect that terminal, for example because you are taking your laptop with you. When you do this – depending on the settings of the current shell – the processes in the background may be killed or ‘moved’ to PID 1 (the init(1) of course) as the PPID (Parent PID). To achieve that we will used that disown(1) command. Once you ‘disown’ a process it will no longer be show by the jobs(1) command, but it will run ‘pinned’ to the init(1) process after you disconnect the terminal session.

% galculator
zsh: suspended  galculator

% bg
[1]  + continued  galculator

% jobs -l
[1]  + 98556 running    galculator

% disown %1

% jobs -l

% pgrep galculator

% pstree -p 98556
─┬◆ 00001 root /sbin/init --
 └─┬─ 48708 vermaden xterm
   └─┬◆ 52463 vermaden -zsh (zsh)
     └──◆ 98556 vermaden galculator

Now its still pinned to the shell in the xterm(1) terminal. After we close the xterm(1) window (or kill that zsh(1) shell) it will switch to init(1) as PPID (Parent PID).

% pstree -p 98556
─┬◆ 00001 root /sbin/init --
 └──◆ 98556 vermaden galculator

% pgrep -P 1 galculator

We are left with nohup(1) then, when and why to use it as we already has great disown(1) magic? Well, disown(1) is not always available, so when You need to put some command into the long background run and disconnect after it its the best possible option. By default the nohup(1) command will log the output of started command into the nohup.out file. Remember that nohup(1) will still run the process in the foreground, to put it into the background use ‘&‘ (ampersand) or [CTRL]+[Z] with bg(1) combo.

% nohup galculator
appending output to nohup.out
zsh: suspended  nohup galculator

% bg
[1]  + continued  nohup galculator

% jobs -l
[1]  + 22322 running    nohup galculator

% pstree -p 22322
─┬◆ 00001 root /sbin/init --
 └─┬─ 89568 vermaden xterm
   └─┬◆ 91486 vermaden -zsh (zsh)
     └──◆ 22322 vermaden galculator

… and after disconnect out process switched to init(1) as PPID.

% pstree -p 22322
─┬◆ 00001 root /sbin/init --
 └──◆ 22322 vermaden galculator

You may of course end a running process in the foreground with [CTRL]+[C] shortcut, but that is probably already known to you. I just mention it for the ‘completeness’ of the guide.

% galculator


Which Which

While the which(1) command shows the full path of the executable found in the first directory of the ${PATH} variable, it also shows what alias is used for that command it there is one. One may ask how then to find information about absolute executable path if it shows and alias(1) instead. Well, you have to use unalias(1) on that command, so which(1) would be showing full path again.

% which caja
caja: aliased to caja --browser --no-desktop

% unalias caja

% which caja

Also be sure to check Smylers comment below about the difference between shell builtin which and /usr/bin/which command.

The difference is that by typing which you are executing your shell builtin command (ZSH in my case) which also takes aliases into account. If you want to omit the unalias part then use /usr/bin/which which will ignore any existing aliases.

% which caja
caja: aliased to caja --browser --no-desktop

% /usr/bin/which caja

Record Session

If you have used PuTTY or MobaXterm in your work, then you appreciate the possibility of saving the terminal output to a file, foe example for the documentation purposes. This is also available ‘natively’ in the shell by using the script(1) command. Remember that script(1) will record also ‘special’ characters like colors, so to properly ‘replay’ the session you may want to either use script(1) or cat(1) commands for that or use less with -R argument.

Here is example recorded script(1) session.

% script script.out
Script started, output file is script.out

% ls
gfx info misc scripts tmp unix.png

% uname -spr
FreeBSD 11.2-RELEASE amd64

% exit
Script done, output file is script.out

% cat script.out
Script started on Sun Jul  8 08:24:06 2018
You have mail.
% ls | grep gfx
% uname -spr
FreeBSD 11.2-RELEASE amd64
% exit

Script done on Sun Jul  8 08:24:20 2018

% less -R script.out
Script started on Sun Jul  8 08:24:06 2018
You have mail.
% ls | grep gfx
% uname -spr
FreeBSD 11.2-RELEASE amd64
% exit

Script done on Sun Jul  8 08:24:20 2018

% less script.out
Script started on Sun Jul  8 08:24:06 2018
You have mail.
% ls | grep gfx
% uname -spr
FreeBSD 11.2-RELEASE amd64
% exit

Script done on Sun Jul  8 08:24:20 2018

Edit Command Before Executing

Sometimes you have long multi-line command to execute, so often it is crafted in you favorite ${EDITOR} and then pasted into the terminal. To omit copying and pasting yo may want to check fc(1) command which serves similar purpose. After you type a command, for example simple ls(1) command, and then you type fc(1) command, then fc(1) will take that ls(1) command into your favorite text editor from ${EDITOR} variable, will allow you to edit it and if you save and exit the that editor, it will execute it.

Lets see how it behave by example.

% ls
gfx   books   download   scripts

% fc

Now you are taken into the ${EDITOR} which is vi(1) in my case.

      1 ls
/tmp/zsh999EQ6: unmodified: line 1

Lets made some changes.

      1 ls -l \
      2    -h


After you hit [ENTER] it will exit from ${EDITOR} and execute that command.

total 6181
drwxr-xr-x    87 vermaden  vermaden    87B 2017.12.18 15:30 books/
drwxr-xr-x    12 vermaden  vermaden    12B 2018.06.19 16:02 download/
drwxr-xr-x    19 vermaden  vermaden    20B 2018.05.24 11:52 gfx/
drwx------    12 vermaden  vermaden   310B 2018.07.07 03:23 scripts/

You may show that command by pressing [Up] key to check what has been executed.

% ls -l -h

Edit or Just View

When working in multi-admin environment – especially while debugging – one admin may block other admin’s work by using vi(1) – or just their favorite editor to ‘browse’ the file contents. Good practice in that case is using more(1) or less(1) instead of vi(1), but that frustrates some admins to type vi(1) again if they need to change something.

… and by the way, on FreeBSD more(1) is less(1) πŸ™‚

% uname -spr
FreeBSD 11.2-RELEASE amd64

% ls -i `which less` `which more`
492318 /usr/bin/less  492318 /usr/bin/more

A blocked ‘example’ is shown below when the second admin wanted to browse the /etc/rc.conf file while the first one already did that.

# vim /etc/rc.conf

Found a swap file by the name "/etc/.rc.conf.swp"
          owned by: root   dated: Sun Jul  8 08:38:35 2018
         file name: /etc/rc.conf
          modified: no
         user name: root   host name: t420s.local
        process ID: 54219 (still running)
While opening file "/etc/rc.conf"
             dated: Fri Jul  6 00:51:11 2018

(1) Another program may be editing the same file.  If this is the case,
    be careful not to end up with two different instances of the same
    file when making changes.  Quit, or continue with caution.
(2) An edit session for this file crashed.
    If this is the case, use ":recover" or "vim -r /etc/rc.conf"
    to recover the changes (see ":help recovery").
    If you did this already, delete the swap file "/etc/.rc.conf.swp"
    to avoid this message.

Swap file "/etc/.rc.conf.swp" already exists!
[O]pen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort:

This is where less(1) comes handy because of you open a file in it, you do not ‘block’ access to it and if you need to edit something just hi [V] key (small ‘v’ letter). It will open that file in your ${EDITOR} editor and you can make any changes now.


Last but not least, often when you paste ‘too much’ into the terminal it becomes ‘fragile’ or ‘broken’. To reset it into the ‘stable’ and ‘proper’ state just use the reset(1) command.

% reset

Hope You find it useful, see you at the Part 3 sometime πŸ˜‰


FreeBSD Desktop – Part 12 – Configuration – Openbox

Time to cut the bullshit and actually make some real configuration. In today’s article of the FreeBSD Desktop series I will describe how to configure the Openbox window manager.

You may want to check other articles in the FreeBSD Desktop series on the FreeBSD Desktop – Global Page where you will find links to all episodes of the series along with table of contents for each episode’s contents.


Comparing to earlier articles in the series it will be HUGE, sorry for that. I could cut it into smaller parts but that would require editing of the Openbox configuration, its shortcuts and menus over and over again, so for the sake of simplicity its better to put it all at once. As it is as that big there will be mistakes, but I will fix them ASAP.

Here is the list of all features that will be available in this Openbox configuration.

  • Nice looking Openbox theme.
  • Openbox Menu (static) with nice looking icons.
  • Openbox Menu for FreeBSD top(1)/ps(1) commands and config files/logs.
  • Openbox Menu for FreeBSD default sound output.
  • Openbox Menu and shortcuts for FreeBSD sound volume increase/decrease.
  • Openbox Menu for FreeBSD for CPU frequency scaling.
  • Openbox Menu for FreeBSD network management with network.sh script.
  • Openbox Menu for screenshots/wallpapers management.
  • Openbox Menu for Recent files.
  • Random wallpaper handling.
  • Random xterm(1) theme at every terminal start with lost of great themes.
  • Openbox shortcuts and script for Aero Snap like behavior.
  • Openbox Dmenu shortcuts and integration.
  • Openbox configured with nice fonts.
  • Openbox shortcuts for most important tasks.
  • Warning for low battery on laptop.
  • I probably forgot about dozen other features – let me know in comments πŸ™‚

Here is how the Openbox menus and window borders and window switching would look like.



Here are all the files with needed configuration.


To make most scripts work Your user (vuk in the series) needs to be in the wheel, operator and network groups and doas(1) (sudo(8) equivalent) needs to be installed and configured in the following way.

# pkg install doas

# pw groupmod wheel    -m vuk
# pw groupmod operator -m vuk
# pw groupmod network  -m vuk

# cat /usr/local/etc/doas.conf
permit nopass :wheel as root

permit nopass :network as root cmd ifconfig
permit nopass :network as root cmd dhclient
permit nopass :network as root cmd umount
permit nopass :network as root cmd wpa_supplicant
permit nopass :network as root cmd ppp
permit nopass :network as root cmd killall args -9 dhclient
permit nopass :network as root cmd killall args -9 wpa_supplicant
permit nopass :network as root cmd killall args -9 ppp
permit nopass :network as root cmd cat args /etc/ppp/ppp.conf
permit nopass :network as root cmd /etc/rc.d/netif args onerestart
permit nopass :network as root cmd tee args /etc/resolv.conf
permit nopass :network as root cmd tee args -a /etc/resolv.conf


In this post I attach scripts I have made and used for about 13 years since I started to use FreeBSD on the desktop. Download them all in the scripts.tar.gz file and unpack them into the ~/scripts to make it look like that.

% find scripts | sort

Make sure they remain executable.

% chmod +x ~/scripts/*

To make them work properly add ~/scripts into the ${PATH} variable at the beginning of the ~/.xinitrc file.

  export PATH=${PATH}:~/scripts

All of my scripts have this ‘mysterious’ line at the end. Its for statistics to check which scripts are run when (or it at all to which ones to delete).

echo '1' >> ~/scripts/stats/$( basename ${0} )

Thus it is needed to create the ‘stats’ directory.

% mkdir -p ~/scripts/stats

I have implemented that about two months ago and here are the results.

% wc -l ~/scripts/stats/* | sort -n
       1 /home/vermaden/scripts/stats/__openbox_show_screenshot.sh
       2 /home/vermaden/scripts/stats/__openbox_cpufreq.sh
       2 /home/vermaden/scripts/stats/__openbox_current_wallpaper.sh
       2 /home/vermaden/scripts/stats/__openbox_fullscreen.sh
       4 /home/vermaden/scripts/stats/__openbox_restart_dzen2.sh
       4 /home/vermaden/scripts/stats/dzen2-fifo.sh
       5 /home/vermaden/scripts/stats/__openbox_dmenu.sh
       5 /home/vermaden/scripts/stats/__openbox_restart_conky.sh
       5 /home/vermaden/scripts/stats/__openbox_restart_tint2.sh
       6 /home/vermaden/scripts/stats/__openbox_delete_wallpaper.sh
       7 /home/vermaden/scripts/stats/__openbox_freebsd_sound.sh
       8 /home/vermaden/scripts/stats/aero-snap.sh
      12 /home/vermaden/scripts/stats/__openbox_edit_screenshot.sh
      16 /home/vermaden/scripts/stats/__openbox_lock_zzz.sh
      16 /home/vermaden/scripts/stats/__openbox_lock.sh
      22 /home/vermaden/scripts/stats/shot.sh
      24 /home/vermaden/scripts/stats/network.sh
     214 /home/vermaden/scripts/stats/xterm.sh
     960 /home/vermaden/scripts/stats/random_wallpaper.sh
    2767 /home/vermaden/scripts/stats/desktop-battery-warning.sh
   13834 /home/vermaden/scripts/stats/desktop-kill-shit.sh
   17916 total

Of course I limited the output only to scripts that are available in this article, but be patient, more to come later πŸ™‚


To make these scripts work and generally to make all this setup work we will need these dependencies.

  • arandr
  • qt5ct
  • qtconfig-qt4
  • sakura
  • leafpad
  • geany
  • caja
  • thunar
  • libreoffice
  • galculator
  • pidgin
  • firefox
  • chrome
  • deadbeef
  • transmission-gtk
  • gnumeric
  • abiword
  • audacity
  • filezilla
  • midori
  • gimp
  • lupe
  • xvidcap
  • zenity
  • xterm
  • xrdb
  • scrot
  • feh
  • wmctrl
  • xdotool
  • viewnior
  • tint2
  • plank
  • dzen2
  • conky
  • mate-screensaver
  • xlockmore
  • gimp
  • dmenu
  • powerdxx
  • htop
  • galculator

To install them all with pkg(8) just type this line below.

# pkg install \
    geany caja thunar libreoffice galculator pidgin firefox chrome midori \
    abiword deadbeef transmission-gtk gnumeric  audacity filezilla zenity \
    gimp lupe recorder xvidcap  xterm xrdb scrot feh wmctrl xdotool tint2 \
    viewnior plank dzen2 conky mate-screensaver xlockmore powerdxx arandr \
    qt5ct gfontview galculator qtconfig qtconfig-qt4 sakura leafpad dmenu \

I also assume that wallpapers will be kept under ~/gfx/wallpapers dir and screenshots made under ~/gfx/screenshots directory, so lets create them now.

% mkdir -p ~/gfx/wallpapers
% mkdir -p ~/gfx/screenshots


Some of these scripts needs to be put into crontab(1) to work, here are their entries.

% crontab -l
  *     *     * * * ~/scripts/desktop-kill-shit.sh                                       1> /dev/null 2> /dev/null
  */5   *     * * * ~/scripts/desktop-battery-warning.sh
  */20  *     * * * ~/scripts/random_wallpaper.sh ~/gfx/wallpapers                       1> /dev/null 2> /dev/null
  12,0  *     * * * /usr/bin/find ~/.cache -mtime +10 -delete                            1> /dev/null 2> /dev/null
  0     */3   * * * /usr/bin/find ~/.local/share/Trash/files -mtime +1 -delete  1> /dev/null 2> /dev/null


I use Ubuntu Mono font for the Openbox menus and Fira Sans font for the Openbox window bar titles, thus you will download them in the fonts.tar.gz file and extract them like that into the ~/.fonts directory, if if does not exists, create it.

% find .fonts

To make sure that Openbox will ‘see’ them you can verify it using the fc-match(1) command like below.

% fc-match 'Fira Sans'
fira-sans-regular.otf: "Fira Sans" "Regular"

% fc-match 'Ubuntu Mono'
ubuntu-mono-regular.ttf: "Ubuntu Mono" "Regular"


Openbox consists mostly of two files.

  • ~/.config/openbox/menu.xml
  • ~/.config/openbox/rc.xml

There are also these two, but its pointless to use them as we set our environment and start our apps/daemons in the ~/.xinitrc file (with ~/.xsession symlink to it), but anyway.

  • ~/.config/openbox/autostart
  • ~/.config/openbox/environment

The icons for the Openbox menu are kept under ~/.config/openbox/icons directory.

Download whole Openbox configuration in the openbox.tar.gz file and unpack it into the ~/.config/openbox to make it look like that.

% find .config/openbox -maxdepth 1

Openbox Theme

The theme we will use at start is the Openbox Flat made by myself, I do not remember if I put it online on the https://www.box-look.org/ site but that does not matter. Grab it in the openbox-flat-theme.tar.gz file and unpack it like that into the ~/.themes directory, create it if it does not exists.

% find .themes/openbox_flat

Openbox FreeBSD Submenus

The ‘systemOpenbox submenu is for FreeBSD top(1)/ps(1) commands and config files/logs.


The ‘soundOpenbox submenu is for FreeBSD default sound output selection.


The ‘recentOpenbox submenu is for Recent files.


Check ‘screenshot:‘ and ‘wallpaper:‘ in the ‘x11Openbox submenu for screenshots/wallpapers management.

Check ‘cpu:‘ in the ‘utilitiesOpenbox submenu for FreeBSD for CPU frequency scaling.

Check ‘NETWORK:‘ in the ‘daemonsOpenbox submenu for FreeBSD network management with network.sh script.


Lets start with the most basic ones. [SUPER] is the so called Windows key.

Shortcuts – Virtual Desktops

  • [ALT] + [F1] – switch to 1st virtual desktop.
  • [ALT] + [F2] – switch to 2nd virtual desktop.
  • [ALT] + [F3] – switch to 3rd virtual desktop.
  • [ALT] + [F4] – switch to 4th virtual desktop.
  • [SHIFT] + [ALT] + [F1] – move current window to 1st virtual desktop.
  • [SHIFT] + [ALT] + [F2] – move current window to 2nd virtual desktop.
  • [SHIFT] + [ALT] + [F3] – move current window to 3rd virtual desktop.
  • [SHIFT] + [ALT] + [F4] – move current window to 4th virtual desktop.

Shortcuts – Menus

  • [SUPER] + [SPACE] – show Openbox root menu.
  • [SUPER] + [ALT] + [SPACE] – show Openbox window list menu.
  • [ALT] + [SPACE] – show current window options menu (client menu).

Shortcuts – Window Management

  • [ALT] + [TAB] – cycle windows focus forward.
  • [SHIFT] + [ALT] + [TAB] – cycle windows focus backward.
  • [CTRL] + [ALT] + [Q] – close current window.
  • [CTRL] + [ALT] + [F] – put current window info fullscreen.
  • [ALT] + [Up] – shade current window.
  • [ALT] + [Down] – minimize current window.
  • [ALT] + [ESC] – send current window below all other windows.

Shortcuts – Advanced Aero Snap

  • [SUPER] + [Up] – move window to half of the screen from top.
  • [SUPER] + [Down] – move window to half of the screen from bottom.
  • [SUPER] + [Left] – move window to half of the screen from left.
  • [SUPER] + [Right] – move window to half of the screen from right.
  • [SUPER] + [CTRL] + [Up] – move window to top-left part of the screen.
  • [SUPER] + [CTRL] + [Down] – move window to bottom-left part of the screen.
  • [SUPER] + [ALT] + [Up] – move window to top-right part of the screen.
  • [SUPER] + [ALT] + [Down] – move window to bottom-right part of the screen.
  • [SUPER] + [ESC] – move window to center – but without fullscreen.

Shortcuts – Mouse

  • [Scroll Up] on Desktop – previous virtual desktop.
  • [Scroll Down] on Desktop – next virtual desktop.
  • [Scroll Up] on (unshaded) Window Titlebar – shade current window.
  • [Scroll Up] on (shaded) Window Titlebar – unshade current window.
  • [Middle Click] on Window Titlebar – send window to background.
  • [Right Click] on Window Titlebar – show window options menu (client menu).
  • [Left Click] on Window Titlebar Icon – show window options menu (client menu).
  • [Middle Click] on Window Titlebar Icon – close window.

Shortcuts – Various

  • [CTRL] + [SHIFT] + [ESC] – launch xterm(1) with htop(1) started with doas(1) for root provilages.
  • [SUPER] + [E] – start Explorer Caja primary file manager.
  • [SUPER] + [E] – start Thunar secondary file manager.
  • [SUPER] + [D] – show desktop – minimize all windows.
  • [SUPER] + [R] – launch dmenu(1) starter.
  • [SUPER] + [L] – lock the screen.
  • [ALT] + [SHIFT] + [SUPER] + [L] – lock the screen and go to sleep.
  • [CTRL] + [PrintScreen] – make screenshot of the whole screen.
  • [SHIFT] + [CTRL] + [PrintScreen] – make screenshot of current window (click without moving the mouse) or selection (select part of the screen).

Shortcuts – Volume

These two work from keyboard.

  • [SUPER] + [ALT] + [PageUp] – increase volume.
  • [SUPER] + [ALT] + [PageDown] – decrease volume.

These below with mouse.

For those who do not have mouse with buttons on the wheel like the Lenovo ThinkPad Precision Wireless Mouse (0B47163) for example, use [ALT] key with mouse scroll up/scroll down on the desktop to increase/decrease volume.

If you do have such mouse, then left on the wheel to decrease and right on the wheel to increase volume.

Random Wallpaper

The random wallpaper handling is done with the ~/scripts/random_wallpaper.sh script. Be sure to put some images into the ~/gfx/wallpapers directory to make it work and to configure crontab(1) properly as shown earlier.

Random xterm(1) Theme

To have random xterm(1) theme on every startup you need three things, the ~/.Xdefaults default config file which is used by xterm(1), the ~/scripts/xterm.sh script and the ~/.config/Xdefaults directory with xterm(1) themes. I gathered all these themes all over the Internet, only the VERMADEN and VERMADEN-OLD themes are created by me.

I have expanded this topic a lot more here –Β FreeBSD Desktop – Part 25 – Configuration – Random Terminal Theme – in dedicated article.

Little preview of some of the included xterm(1) themes.


To make xterm(1) icon look better you will also need icons.tar.gz file download and extract with the end result looking as follows.

% find .icons

Download and extract the xterm.tar.gz file to make its contents look like that.

% find ~/.config/Xdefaults 

Thats a lot of information for one article, feel free to ask me for anything related or about things that I might forgot to put here.

UPDATE 1 – network.sh Integration

In other article I described how to manage various network sources with the network.sh script – FreeBSD Network Management with network.sh Script – available here.

Below is an example of integration of that network.sh script with Openbox window manager.


… and here is the code used in the ~/.config/openbox/menu.xml file.


Of course you can integrate network.sh script with almost anything – its just a command πŸ™‚